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Abstract
This is part 1 of a two-part review on wave operator theory and methods. The
basic theory of the time-independent wave operator is presented in terms of
partitioned matrix theory for the benefit of general readers, with a discussion
of the links between the matrix and projection operator approaches. The
matrix approach is shown to lead to simple derivations of the wave operators
and effective Hamiltonians of Löwdin, Bloch, Des Cloizeaux and Kato as
well as to some associated variational forms. The principal approach used
throughout stresses the solution of the nonlinear equation for the reduced wave
operator, leading to the construction of the effective Hamiltonians of Bloch
and of Des Cloizeaux. Several mathematical techniques which are useful in
implementing this approach are explained, some of them being relatively little
known in the area of wave operator calculations. The theoretical discussion
is accompanied by several specimen numerical calculations which apply the
described techniques to a selection of test matrices taken from the previous
literature on wave operator methods. The main emphasis throughout is on the
use of numerical methods which use iterative or perturbation algorithms, with
simple Padé approximant methods being found sufficient to deal with most of
the cases of divergence which are encountered. The use of damping factors and
relaxation parameters is found to be effective in stabilizing calculations which
use the energy-dependent effective Hamiltonian of Löwdin. In general the
computations suggest that the numerical applications of the nonlinear equation
for the reduced wave operator are best carried out with the equation split into a
pair of equations in which the Bloch effective Hamiltonian appears as a separate
entity. The presentation of the theoretical and computational details throughout
is accompanied by references to and discussion of many works which have used
wave operator methods in physics, chemistry and engineering. Some of the
techniques described in this part 1 will be further extended and applied in part 2
of the review, which deals with the changes which are required to extend wave
operator theory to the case of a time-dependent Hamiltonian such as that which
describes the interaction of a laser pulse with an atom or molecule.
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1. Introduction

This present work is part 1 of a two-part work which deals with the theory and applications of
wave operator methods. Part 1 sets out the basic theory and history of the time-independent
wave operator concept and part 2 proceeds to some more advanced and relatively recent
developments which use and apply a time-dependent form of the wave operator to deal
with problems such as the theory of molecular dissociation by laser pulses. To make part 1
more accessible to the non-specialist reader several of the concepts of the wave operator
approach have been presented in terms of a partitioned matrix formalism and several illustrative
calculations have been performed on finite test matrices which have previously been used in
the literature to develop new computational techniques. The reader acquainted with matrix
techniques should thus find part 1 to be a gentle introduction to the area of the theory and
applications of wave operator methods. The authors hope that even specialists in the field
will be able to find some useful ideas and methods in the review; several of the methods
set out in the text and the trial calculations were either devised during the writing of the
review or were discovered by a lengthy study of corners of the mathematical literature
which are not well known to scientists. One fact which emerged from a wide-ranging
study of the literature was that several useful ideas or methods have been developed in
parallel (with frequent rediscoveries) in the literature of mathematics, chemistry, physics and
engineering.

The authors have made no attempt to give an exhaustive bibliography. The number of
references has been limited to just a few hundred, although many of the papers cited are key
works and so contain references which will allow the reader to trace back the development
of any particular topic of interest. Because of the many thousands of works which could
have been cited it was necessary for the authors to impose some restrictive guidelines, the
principal ones being: that cited works should have been studied in fair detail by one or
both authors; that they should make some use of the wave operator concept; and that they
should contain some degree of originality or clarity of exposition which make them useful
either to general readers or to specialists. Despite the year or so spent in researching the
literature the authors are sure to have missed several valuable works which would have
qualified under these tests and apologize in advance to any author whose contribution has been
inadvertently overlooked. The tests described above could not, of course, be applied with
full rigour, since many works which deal with effective Hamiltonian theory were necessarily
included despite the fact that their use of the wave operator concept was sometimes more
implicit than explicit. This general introduction refers only to a limited number of works,
since it has been judged more useful to give those references which deal with a particular
concept or technique in the sections of the text which specifically treat the technical topic
concerned.

1.1. Some notational conventions

This two-part review is a joint work which has arisen out of several years of research visits
by JPK to the research group of GJ at the Observatory of Besancon, University of Franche-
Comté. In the initial writing of the review the large amount of material to be surveyed and
sifted meant that a division of labour was necessary, with JPK dealing mainly with part 1 on
the time-independent wave operator theory and GJ dealing mainly with part 2 on the time-
dependent wave operator and its applications to calculations on various dynamical processes.
This coverage of two topics and of a wide range of literature has made it necessary to find
some kind of compromise in matters of notation. As a simple example, the projection operator
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for the model space has been denoted by various authors by at least the three different symbols
P,Q and O, with the meanings of P and Q being exactly opposite from one author to another.
The present authors have thus felt free to introduce some clear but slightly unorthodox notation
in the two parts of the work. Given the great variety of notations used in the literature to denote
various entities and also the slightly different traditions in the subject areas of parts 1 and 2, it
has not always been possible to keep exactly the same notation in both parts while attempting to
review a wide range of past works as well as making some worthwhile original contributions.
Accordingly, some of the conventions adopted in the present part 1 are set out below to give
some advance warning to the reader.

The usual abbreviations Brillouin–Wigner (BW) and Rayleigh–Schrodinger (RS) are used
in the perturbation sections, with Gauss–Seidel (GS) being used in the sections dealing with
iterative methods. The abbreviations RDWA (recursive distorted wave approximation) and
SCM (single cycle method) are used to refer to two of the methods for wave operator calculation
which are based on matrix similarity transformations. The abbreviation SPD (symmetric
positive definite) is used for matrices. Capital letter symbols such as HL,HB,HBV , etc are
used for some of the effective Hamiltonians, with appropriate explanation in the text. This
simple labelling seems to the authors to be much neater than the affixing of multiple subscripts
which is common in the literature. In the sections dealing with partitioned matrix methods and
with several simple illustrative computations a notation devoid of subscripts has been tried,
following the conventions more typical of high level imperative computing languages. This
approach not only makes the nature of variables clearer but also permits a much condensed
description of several iterative procedures. It is of special value in making clear the particular
shape (square or rectangular) of the various matrix sections which arise in the theory of the
reduced wave operator. Thus, for example, the Nth order estimate of the J,K element of
an effective Hamiltonian can be represented by a clear symbol such as HB(J,K; N). This
notation allows several indices to be used without a proliferation of small subscripts and
superscripts.

Mathematical equations use the normal = sign for the standard equality of algebra.
However, to describe calculations the Algol–Pascal assignment statement symbol := is useful.
The standard computing convention ‘old on right and new on left’ is used. For example, the
statement A := A + 5, which would be nonsense with an = sign, simply means ‘let the new
A value be 5 plus the old value’. When a calculation involves two or three short assignment
statements these are sometimes placed together on a line, with a colon : as the separating sign
(borrowed from QBasic). The conventions described above, although not standard, have been
used previously by JPK and lead to a clear and simple way of describing those mathematical
topics which involve matrix or perturbation methods and which naturally lead to computational
algorithms and programs. The authors hope that readers will quickly adjust to this notational
style and will find that it provides a simple and clear way to represent many of the calculations
which are set out throughout part 1.

Given the long history of applied quantum mechanics it is not surprising that various ideas
and methods have been rediscovered from time to time; a few examples of this are mentioned
throughout the text. Ambiguities of naming have also sometimes arisen. For example the
name ‘intermediate Hamiltonian’ used in wave operator theory was also used long ago for
some inner projections of the Hamiltonian which were used to find lower bounds to energies
(see, e.g. Sack 1972, Almassy and Patkos 1989, Seto and Stankevich 1999). In modern
molecular theory ‘partitioning’ can refer to the partitioning of a Hilbert space into A and B
parts or to the partitioning of the Hamiltonian into an unperturbed part plus a perturbation
(usually by the Møller–Plesset (MP) or the Epstein–Nesbet (EN) methods). Such ambiguities
can sometimes cause a surfeit of output in a database search but are quickly resolved by the
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context when a particular paper is studied. However, from experience JPK can testify that
the greatest surfeit of database output is obtained by a naive search under the heading ‘wave
operator’!

1.2. Introduction to the Bloch wave operator concept

Wave operator concepts of various kinds have a long history. Many authors have used the
notion of a formal operator which transforms the incident wavefunction into the outgoing
wavefunction in a scattering process or which transforms the unperturbed state into the
perturbed state in perturbation theory. The formal mathematical proof that such an operator
exists does not, of course, remove the difficult task of actually calculating it for specific
problems. For example, the Møller wave operator of formal scattering theory, which acts over
the time interval −∞ to 0 and which transforms the noninteracting state into the interacting
state at t = 0 was proved to exist formally under certain conditions by Møller (1945),
yet the ways in which it can be modified and actually applied to a variety of numerical
scattering problems are still being developed (e.g., Snider 1988, Johnson and Reinhardt 1983,
Viswanathan et al 1989, Baute et al 2001). If a time-dependent point of view is adopted in
perturbation theory, then the perturbed states of a system can be regarded as being produced
from the unperturbed ones by an adiabatic switching on of the perturbing potential between
t = −∞ and t = 0; indeed, several of the early works on many-body perturbation theory
started from this time-dependent approach. Within the context of the methods of Bloch wave
operator theory the method of sequential similarity transformations which is used in the RDWA
and SCM approaches was originally treated by a time-dependent approach which used the
adiabatic theorem and a sequence of intermediate representations to describe the evolution of
the wavefunctions (Jolicard and Grosjean 1985)

The Møller wave operator of formal scattering theory has what Wittgenstein would have
called a ‘family resemblance’ to the Bloch wave operator which figures largely in the present
review. Since the Møller wave operator refers to an integrated effect between t = −∞ and
t = 0, it is a time-independent operator and its theory has been treated in various papers
(e.g., Møller 1945, Lippmann and Schwinger 1950, Gell-Mann and Goldberger 1953, Stanton
1971) as well as in books such as those of Roman (1965) and Levine (1999). Roman’s
account makes it clear that the Møller operator is appropriate to describe scattering processes,
which mainly involve a continuous spectrum; indeed, the types of Møller operator defined by
Roman have the property of giving zero when they act on bound state functions. By contrast,
the time-independent Bloch wave operator of part 1 of this review has been applied almost
exclusively to the calculation of bound states in the literature of chemistry and physics. Reed
and Simon (1978) and Thirring (1979) discussed the Møller wave operator in a wider context
but the principal concern in all the cited works was to establish conditions under which the
propagator product exp(itH/h̄) exp(−itHo/h̄) will converge in the limits t → ±∞, leading
to the Møller wave operators �±. For Hermitian perturbed and unperturbed Hamiltonians
H and Ho, respectively, the �± operators are unitary, whereas the Bloch wave operator
of the present review is a non-unitary operator associated with a similarity transformation.
Perhaps the closest analogy between the Møller and Bloch wave operators arises if the Bloch
wave operator is used in conjunction with a special basis in which the basis functions are
the eigenfunctions of an unperturbed operator to which the potential V is added to give the
full Hamiltonian (this then corresponds to the use of two such operators in the propagators
which give the Møller wave operator). If the model space to be used is then chosen to be
one of these basis functions, the Bloch reduced wave operator of this review is then simply
proportional to the eigencolumn with the first element excluded. For this very special case
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some of the equations of the formal scattering theory associated with the Møller wave operator
(e.g., the Lippmann–Schwinger equation) resemble those of the wave operator theory for the
Löwdin effective Hamiltonian HL of this review, with the difference that complex energies
appear in the scattering theory case. Brandas and Micha (1972) described a variational
approach which establishes a link between the scattering theory methods of Lippmann and
Schwinger and the wave operator techniques described in the works of Löwdin. The book
by Levine (1999) treats the Møller wave operator of scattering theory but also has a chapter
on operator partitioning theory which includes the same wave operator as that used with the
Löwdin effective Hamiltonian for bound states in section 2.1 of the present review. The
Møller wave operator, although time-independent, is formally defined using a product of
exponential propagation operators involving the perturbed and unperturbed Hamiltonians;
Roman (1965) gave a detailed treatment in the context of the theory of the time-dependent
Schrödinger equation. This theoretical approach via time-dependent theory carries over into
numerical work. Numerical calculations of Møller wave operators often use finite difference
or wavepacket techniques within a time-dependent approach (e.g., Viswanathan et al 1989).
By contrast the Bloch wave operator is mainly used for bound state energies and within that
context lends itself directly to the simple finite matrix approach which is described in the rest
of this section and which is used throughout part 1 of this review.

The calculation of the energy levels of a system is often carried out by using a Rayleigh–
Ritz approach which approximately represents a Hilbert space calculation by using a large
but finite set of basis functions. This common method of calculation directly sets various
perturbation and variational techniques in the context of traditional matrix algebra. It is
the use of the partitioned matrix approach in this context which has led to many of the
developments in the definition and use of various wave operators. Within matrix eigenvalue
theory itself the most important notions of wave operator theory are fairly easy to set out. They
are quite general, although in many applications they are specifically applied to the Hermitian
or real symmetric matrix H which represents the quantum mechanical Hamiltonian operator
in some large basis set. The basic premise behind the wave operator concept is that in physical
applications it is often only necessary to know exactly a relatively small number M of the
eigenvalues and eigenvectors of a large N ×N matrix H. In many cases it is the lowest M levels
which are required. For simplicity it can be supposed (as is often the case) that the elements
of H are arranged with the diagonal elements in increasing numerical order. Using only the
‘lowest’ M basis functions of H will lead to approximate solutions for the lowest M states,
but the coupling to all the other (N − M) basis functions will modify the results. However,
by suitably modifying the numerical elements in the M × M matrix it should be possible to
produce the exact eigenvalues for the lowest M states. The technical task is to find the rules
which give the appropriate modified matrix elements of this M × M matrix (the effective
Hamiltonian). It is easily seen that there are infinitely many of these effective Hamiltonians,
since from any given one another one with the same eigenvalues can be generated by means of
a similarity transformation. A consideration of the eigenvector problem helps to cut down the
number of possible useful effective Hamiltonians. Any eigenvectors calculated in the small
space of dimension M are lacking in a considerable amount of information, since they make no
mention of the large number (N − M) of components of the true full eigenvector in the larger
space. It is now assumed that there exists a wave operator W (in this case a rectangular matrix)
which will produce the full eigenvector components when acting on the M components which
have been found for each eigenvector by using the effective Hamiltonian in the small space. At
first sight the assumption that there exists such an operator which is simultaneously effective
for M different states might appear to be extreme. However, by incorporating this assumption
as a postulate in the algebra of the matrix eigenproblem in partitioned matrix form it is found
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that the wave operator should obey a nonlinear equation (which actually has solutions) and that
the knowledge of the wave operator leads directly to the construction of an associated effective
Hamiltonian. Thus a formal scheme is set up which can in principle lead to full knowledge of
the lowest (or a selected set of ) M levels in the spectrum of H. In the modern history of the
subject there have been two main traditions in the literature associated with the use of effective
Hamiltonians. One of them seeks to set up the elements of the effective Hamiltonian directly
by means of rules which involve the matrix elements of H, often with the assumption that the
off-diagonal elements are regarded as a small perturbation and so give contributions which can
be expressed by means of a perturbation series. The second tradition (with which the present
work is mainly concerned) takes the wave operator as the central theoretical entity which
has to be found by perturbation or iterative methods, with the effective Hamiltonian being a
subsequent auxiliary derived quantity. In many cases this ‘indirect’ approach via the wave
operator concept has led to fruitful developments both in the theory and in the computational
applications of effective Hamiltonians.

The aim of the present part 1 of the review is to set out some of the main distinctive features
of this wave operator approach and to use a few simple illustrative calculations to make them
more understandable to readers who might not be familiar with their use. Some methods and
ideas which have arisen during the writing of part 1 seem to merit further investigation and
might be of some interest to specialists. The individual sections of the review contain many
such ideas but a few of the methods which have been explored in the simple test calculations
are of particular interest and so are listed below. They are:

(i) The use of the energy-dependent effective Hamiltonian HL to construct the energy-
independent reduced Bloch wave operator F for a group of states.

(ii) A simple iterative method for calculating matrix square roots without matrix inversion or
diagonalization, thus simplifying the construction of the canonical effective Hamiltonian
HD from the Bloch version HB.

(iii) The application of the simple formula for the first-order Bloch wave operator in the SCM
algorithm, which is shown to have a range of applications, from square root calculation
to full matrix diagonalization.

(iv) The simple derivation of variational partners of the standard effective Hamiltonians (HBV

with HB,HDV with HD, etc).

1.3. General theory: selected references

Several hundreds of works have adopted a partitioned matrix approach to perturbation theory
(with or without the wave operator concept) and so in this general introduction only those few
of them are mentioned which are regarded as accessible to a general reader who has a standard
knowledge of matrix methods. The most prolific writer in this area was undoubtedly the late
Per-Olov Löwdin. Löwdin (1962) gave a detailed account of the main ideas of the partitioning
approach to perturbation theory, while Löwdin (1965a, 1965b) described the use of that
approach to calculate both upper and lower bounds to bound state energies. Löwdin (1982)
set out various links between the partitioning approach and the use in quantum mechanics of
a type of rational approximant which is similar to the Padé approximant and which is useful
for divergent series. Löwdin’s lower bound techniques were further developed by Choi and
Smith (1966), Wilson (1967a, 1967b) and Wilson and Read (1967). Hoffmann-Ostenhof and
Mark (1973) made some interesting observations about the use of partitioning for various
functions f (H) of the Hamiltonian. Choi (1975) used a partitioning approach to derive an
algorithm which leads to a perturbation expansion of an effective Hamiltonian which appears
to be essentially that of Des Cloizeaux (1960). Although set out almost entirely in terms of
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the mathematical context of the simple and generalized matrix eigenvalue problem (so that
they are little known by chemists and physicists) the works by Coope (1970) and by Coope
and Sabo (1977, 1981) developed several techniques and concepts which are very effective in
connection with the wave operator approach. A later study by Cederbaum et al (1989) on the
block diagonalization of Hermitian matrices gave some useful insights into the properties of
the effective Hamiltonians which are associated with wave operator methods.

Several classic works are regarded as having established the main concepts of the theory
of the wave operator and of the effective Hamiltonian; they are well worth studying, although
the general reader should be warned that several of them used methods and points of view
which can appear to be over-complicated to modern workers who have found more direct
and simple ways to re-derive some of the most useful parts of the theory. One of the earliest
works was that of Kato (1949). He used a resolvent operator method to derive an effective
Hamiltonian which leads to the perturbed energies of a group of levels arising from an initially
degenerate level. Finding the levels requires the solution of a generalized eigenvalue problem
and the terms in the effective Hamiltonian are expressed as a perturbation series. The textbook
of Messiah (1960) gave a clear exposition of Kato’s approach. Within the context of nuclear
theory Bloch (1958) re-examined Kato’s work and produced a perturbation series for the
non-Hermitian effective Hamiltonian which is nowadays usually named after him. Bloch and
Horowitz (1958) treated the energy contribution due to a few particles outside a closed nuclear
core and derived an energy-dependent effective Hamiltonian which is of the typical BW form
associated with the Löwdin effective Hamiltonian denoted by HL in this review. Huby (1961)
gave a clear exposition of the relationship between Bloch’s theory and that of Brueckner
(1955) and gave some rules for constructing the perturbation terms of various orders in the
expansions of the Bloch wave operator and of the perturbed energy. Huby’s work was for
a non-degenerate state; Silverstone (1971) later generalized it to obtain perturbation series
for the effective Hamiltonian associated with an initially degenerate level. Des Cloizeaux
(1960) applied a formula due to Lagrange in a derivation of a perturbation series for an
Hermitian form of effective Hamiltonian which is nowadays often called the canonical form.
Silverstone and Holloway (1971) apparently overlooked this work when they also treated the
problem by using a similar formula of Lagrange, although they started from a BW approach to
develop their formulae. In a set of three papers Soliverez (1969, 1980, 1981) extended Bloch’s
theory and set up a general formalism which included the effective Hamiltonians of Bloch
and Des Cloizeaux as particular cases. Of the various other works which set out to include
the known effective Hamiltonians in a general formalism the works of Lindgren (1974), Klein
(1974), Jorgensen (1975) and Kvasnicka (1975a, 1975b) all made important contributions to
the subject and made clearer the extent to which some of the concepts could be developed
from what appeared to be quite different points of view.

The present review concentrates on matrix and iterative numerical methods, but it will be
clear from a study of the works cited above that the diagrammatic approach played a large role
in the early history of wave operator theory. It still does so in those parts of quantum chemistry
in which it is regarded as important to use formalisms which correspond to the use of linked
clusters in an approach via perturbation theory. Authors who developed the diagrammatic
approach to perturbation theory included Goldstone (1957), Katz (1962) and Langhoff and
Hernandez (1976), while authors such as Kelly (1963, 1969), Ellis (1975), Bartlett and Shavitt
(1977) and Finley (1998a, 1998b) applied it to atomic or molecular systems. The works of
Primas (1961, 1963) and Goodman (1965) set out to present general perturbation theory in
a manner such that it automatically produced linked clusters in its representation in terms of
diagrams. They did this by writing the theory in terms of operator commutators and made
use of mathematical techniques such as superoperator theory and an original type of operator
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commutator analysis. The majority of the works using diagrams which have been cited above,
however, used their diagrammatic approach in conjunction with an algebraic approach which
is understandable in its own right, since the diagrams were usually set up in order to give
a visual description of the contributions which arose from an application of the algebraic
formulae. Hose and Kaldor (1979) also described algebraically derived results in terms of
diagrammatic rules, but Meissner and Bartlett (1989) later showed that they had omitted
some classes of diagrams when formulating their rules. Cullen et al (1985) emphasized that
using diagrams needs only orbital matrix elements rather than state ones. The papers of Katz
(1960), Mavromatis (1973) and Bartlett and Silver (1975) gave readable accounts of the time-
independent diagrammatic approach which related it to standard perturbation theory and to
the use of illustrative matrix models. In particular Mavromatis pointed out that the obtaining
of upper bounds to eigenvalues in matrix diagonalization approaches necessarily corresponds
to the use of some unlinked diagrams. Kansa (1974) described the link between the linked
cluster perturbation theory and the method of configuration interaction for the Be atom. Apart
from his better-known (1967) long work on the diagrammatic approach Brandow (1970, 1979)
also wrote several more readable works which gave a good critical account of the basic theory
of wave operators and of its applications in nuclear and molecular theory. Freed (1974) and
Durand and Malrieu (1987) gave long reviews of the value of the effective Hamiltonian concept
in a range of problems in the theory of molecular structure and of magnetism.

1.4. Computational methods: selected references

Many of the works cited above concentrated on the formal aspects of the theory or applications
of wave operator and effective Hamiltonian methods, often producing their results in the form
of general algebraic formulae. It is also worthwhile to cite some of the works which have
paid more special attention to the construction of algorithms for the numerical calculation of
various quantities, either by evaluation and summation of perturbation series or by the use
of various iterative algorithms. Hegarty and Robb (1979) and Baker et al (1981) treated the
RS perturbation formalism, starting from a partitioned matrix approach, and then devised and
applied a numerical technique to evaluate the low-order terms appearing in the series for the
effective Hamiltonian. The first paper used a GS method to solve some associated sets of
linear equations while the second used a Lanczos method, with particular attention to the
effectiveness of the calculations in the presence of intruder states and to methods of summing
some perturbation terms to infinite order. The Toulouse group and its co-workers have
produced many works which combine developments in basic theory (e.g., the intermediate
Hamiltonian concept) with the use of efficient numerical algorithms. Durand (1983) used
projection operator algebra to give a powerful synthesis of the theory of several types of
effective Hamiltonian and a simple derivation of the generalized Bloch equation. He also
proposed several iterative methods for the numerical calculation of the wave operator and
his later work on algorithms, well represented by Durand et al (1994), concentrated on the
development of methods which have second-order convergence and so serve to reduce the
amount of computational time required for large scale problems. Durand et al (2000) applied
such methods to the case of a large matrix which has complex elements and is non-Hermitian
(as stressed in later sections the wave operator formalism applies generally, without restrictions
on the symmetry of the matrix being treated). Gadea (1987, 1991) used a projection operator
formalism to give a detailed analysis of the relationship between the model and target spaces
in wave operator theory, devising some new algorithms which were tested on simple test
matrices; the concept of the variational partners of some standard effective Hamiltonians was
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developed in detail in these works (and arises in the partitioned matrix section of the present
review).

Although the work of the Besancon group and its co-workers has tended to emphasise
the concept of the time-dependent wave operator and so is appropriate to part 2 of this review
(along with other work by the Toulouse group) the group has produced several works which
have devised and applied calculational methods for matrices within a time-independent wave
operator approach. The techniques used included a GS–Bloch method (Périé et al 1993), a
spectral filter matrix eigenvalue method (Jolicard et al 1996) and a trial state method for a
complex matrix (Jolicard et al 2001). The first of these papers made use of the SCM approach,
which is used for various purposes in some of the trial calculations in part 1 of this review.
Amongst other works which developed numerical algorithms mention should be made of the
recursive approach to RS degenerate perturbation theory which was formulated and applied
to Zeeman effect calculations by Silverstone and Moats (1981) and of the iterative techniques
based on the generalized Bloch equation which were developed and applied by Meissner and
Steinborn (1997a, 1997b, 1997c). Kowalski and Piecuch (2000a, 2000b) used a homotopy
method to obtain a large number of solutions of the generalized Bloch equation and then
examined the problem of how many of these solutions had relevance for physical problems.
Andreozzi (1996) not only clarified and related some existing methods for the numerical
calculation of wave operators but also constructed new methods which were more general by
making use of the effective Hamiltonians of both the A space and the B space (to use the
terminology of this review).

2. The matrix partitioning approach

The matrix partitioning approach described in this section has been constructed by taking the
most simple and direct blend of various methods which have appeared in the literature. It is
mainly inspired by the approaches of Löwdin and of Coope but represents an original variation
on their methods. Method 1 as described here is by far the most common one adopted in the
literature, while Method 2 represents a particularly compact form of derivation of the reduced
Bloch wave operator, which is frequently derived using projection operators in the standard
literature. Method 3 gives an elementary approach to the variational forms of several effective
Hamiltonians which are not yet widely used in the literature. The initial procedure involves
writing the eigenvalue equation for the Hamiltonian as a matrix eigenvalue problem, using
some basis set for which it is possible to evaluate the required matrix elements. A small
subspace spanned by some of the basis functions is then chosen as the model space (with the
label A), while the rest of the basis functions are grouped into the orthogonal complement
of A (with the label B). The set of basis functions used to set up the Hamiltonian matrix is
assumed to be orthonormal. The resulting matrix eigenvalue equation can then be written in
a partitioned form which shows the A and B space components:(

H(AA) H(AB)

H(BA) H(BB)

) (
X

Y

)
= E

(
X

Y

)
. (2.1)

Here X and Y are the projections into spaces A and B, respectively, of the eigencolumn
with eigenvalue E. Using partitioned matrix multiplication to work out (2.1) leads to the
simultaneous matrix equations

H(AA)X + H(AB)Y = EX (2.2)

H(BA)X + H(BB)Y = EY. (2.3)
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There are several ways to proceed with the solution of this partitioned eigenvalue problem;
three of the most useful ones are set out below.

2.1. Method 1. Elimination of Y

The obvious (and most commonly followed) approach is to eliminate Y by using the second
equation and then to substitute the result in the first equation to obtain an equation for X alone.
Eliminating Y gives

Y = F(BA)X (2.4)

where

F(BA) = [EI(BB) − H(BB)]−1H(BA). (2.5)

Substituting in equation (2.2) then gives

HL(AA)X = [H(AA) + H(AB)F(BA)]X = EX. (2.6)

In calculations the inverse on the right of (2.5) is not usually found directly; the equation
is simply recast to become one involving a set of simultaneous linear equations which can be
solved by various methods. This particular way of writing the traditional equations makes
it easy to compare the results of methods 1 and 2 in the subsequent discussion. It is clear
from the equations above that the problem has been reduced to an eigenvalue problem for
the effective Hamiltonian HL(AA) in the small model space A, with the X component as the
eigenvector (The symbol HL stands for ‘Löwdin Hamiltonian’). Inspection of (2.6) shows that
the situation is not as simple as might appear at first sight, since the second term in HL(AA)

involves the unknown sought eigenvalue E; this means that an iterative self-consistent method
of numerical solution has to be used, with E being adjusted until it equals an eigenvalue of HL.
Whatever the dimension of the model space, the several eigenvalues have to be found one at
a time, with a separate self-consistent calculation for each one. The situation is that which is
usually described in the existing literature by the statement that the effective Hamiltonian HL

is energy-dependent. The self-consistent method of solution which is required is equivalent
to a state by state application of an approach within the Brillouin–Wigner tradition, although
the calculation of F(BA) can be made either by a Gauss–Seidel method (which is closer to a
fully perturbative approach) or by a direct non-perturbative matrix calculation using Gaussian
elimination or some other method. The symbol HL has been used here in honour of the many
contributions made to the theory by Per-Olov Löwdin. The same mathematical formalism was
also used by Bloch and Horowitz (1958) in their work on the energy contribution due to a few
nucleons outside a closed shell in nuclear theory, and by Feshbach (1948, 1962) in the theory
of nuclear reactions. Hagston et al (2002) have recently found a similar approach useful in
the quantum theory of solids.

Even without detailed numerical calculation equations (2.5) and (2.6) make it clear that
the effective Hamiltonian HL has formal singularities at the eigenvalues of H(BB). The
presence of the alternating rising and falling asymptotes at these singularities implies that
there should be an eigenvalue of the full H between each eigenvalue of H(BB), together with
the extra ones at the bottom of the spectrum which are below the lowest eigenvalue of H(BB).
Although the theory described here is quite general, references to the ‘top’ or ‘bottom’ of the
spectrum are, of course, based on the commonly used convention that the matrix is ordered
with its diagonal elements in an order of increasing magnitude.
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2.2. Method 2. Elimination of E

The unorthodox way of writing the equations for method 1 above gives a clue about how to use
a different strategy in approaching the partitioned eigenvalue problem. The quantity F(BA)

is retained, so that equation (2.4) still holds (i.e., so that Y can be simply calculated once X is
known) but the particular expression for F(BA) given by equation (2.5) is not retained. The
partitioned eigenvalue problem then takes the form

H(AA)X + H(AB)F(BA)X = EX (2.7)

H(BA)X + H(BB)F(BA)X = EF(BA)X. (2.8)

The first equation can now be multiplied from the left by F(BA), so that the right-hand sides
of both equations become EF(BA)X. The result is then an equality between the two resulting
left-hand sides. This can be written in a form with a zero on the right;

f (F,H)X = 0 (2.9)

with

f (F,H) = H(BA) + H(BB)F(BA) − F(BA)H(AA) − F(BA)H(AB)F(BA). (2.10)

The logical basis of Bloch wave operator theory can then be explained as follows. The
rectangular matrix F(BA) is chosen so as to render zero the rectangular matrix f (F,H)

appearing in the equations above, so that the equation f (F,H)X = 0 will be true for every
vector in the A subspace and not just for those particular X which are eigencolumn projections.
The matrix F is thus associated with the whole of the A space. When F has been chosen to
obey (2.9) then the effective Hamiltonian

HB(AA) = H(AA) + H(AB)F(BA) (2.11)

can be formed in the A subspace (Here the symbol HB has been used, to stand for ‘Bloch
Hamiltonian’). Whenever an eigenvalue and eigencolumn of HB(AA) are found, it then
follows not only that (2.7) will be obeyed but also that (2.8) will be obeyed. Thus the full
space eigenvalue problem will have been solved and the B space part of the eigencolumn will
be found simply by forming the product Y = FX, with the rectangular matrix F having the
same fixed form for all of the eigencolumns.

The compact approach given above uses less algebra than is common in the literature but
puts more emphasis on the logical understanding of the interpretation and use of the quantities
which appear in the theory. Method 2 clearly leads to an effective Hamiltonian HB which is
energy-independent, so that any convenient method of diagonalization can be used to extract all
the eigenvalues associated with space A in one calculation, thus avoiding the self-consistent
calculation of the eigenvalues one at a time. When the matrix H is Hermitian there is a
technical difference between the types of eigenvalue problem associated with HL and HB;
HL is an Hermitian matrix while HB is not and so requires an appropriate diagonalization
method. The apparent advance in the treatment of the problem is bought at a price, however,
since the appropriate rectangular matrix F(BA) has to be found by solving the nonlinear
equation f (F,H) = 0, where f (F,H) is a rectangular matrix of the same type as F(BA). A
careful study of the derivation which has been presented above shows that the single nonlinear
equation for F(BA) can be rewritten as a pair of equations which in essence reinstates the
partitioned form which originally led to that equation:

HB(AA) = H(AA) + H(AB)F(BA) (2.12)

H(BB)F(BA) = F(BA)HB(AA) − H(BA). (2.13)
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Subtracting eF (BA) from both sides of the second equation, where e is an arbitrary number,
leads to the alternative form

[H(BB) − eI (BB)]F(BA) = −H(BA) + F(BA)[HB(AA) − eI (AA)] (2.14)

where the symbol I denotes a unit matrix of the appropriate dimension. In the derivation
of all of the equations presented in this section great care has been taken to indicate with
clarity the exact type of square or rectangular matrix which represents every quantity in the
theory. In a full matrix notation F(BA) would have three zero sections. A comparison of
equations (2.5) and (2.14) now reveals that the F(BA) which appears in method 1 (with
an energy-dependent effective Hamiltonian) is a special case of the F(BA) of method 2 for
which the parameter e is set equal to E and only the term −H(BA) is retained on the right in
equation (2.14). This means that it is possible to set up a computational approach in which
either the energy-dependent or energy-independent effective Hamiltonian cases can be chosen
at will.

The particular approach which has been adopted here is similar in spirit to that adopted
using operator algebra by Bloch (1958) and the rectangular matrix F(BA) which plays the
central role in the formalism presented above is equivalent to what is usually termed the Bloch
reduced wave operator, actually in a form which is slightly generalized, since the original
Bloch theory referred to an initially degenerate level and used perturbation expansions to form
the effective Hamiltonian for the perturbed levels. In the literature F is sometimes called the
decoupling operator or the correlation operator, depending on the type of problem which is
being treated and depending on whether an operator or a finite matrix approach is used. Since
equation (2.14) has F(BA) on both sides of it, a direct approach to its solution will usually
involve an iterative procedure. Test calculations given in later sections have shown that both
iterative and perturbation methods for the calculation of F(BA) are more efficiently carried
out when the single nonlinear equation f (F,H) = 0 is replaced by the pair of equations (2.12)
and (2.13) or (2.12) and (2.14). From the discussion of methods 1 and 2 given above it is clear
that there are two ways of approaching the calculation of F(BA). One way is to find a solution
of the nonlinear equation for F and then to find HB and the associated eigencolumns; this
is the approach widely adopted in the literature, although in many chemical applications the
problem of nonlinearity is avoided by using only the lowest-order approximation for F (which
is given by a simple linear formula). A second way to find F is to revert to first principles. It
might be that for some difficult cases (such as those involving the so-called intruder states) a
calculation of one state at a time making use of HL is the easiest one to perform. Once the
X and Y components of a group of eigenstates have been found using HL it is then possible
to construct the F and thence the HB which would have produced the known results in the
energy-independent approach. Evangelisti et al (1987, 1991) made use of this first principles
approach in a study of avoided crossings and of intruder state effects in general. They studied
the Li2 system with variable interatomic distance r, using full matrix diagonalization to find
the spectrum and then constructing the HB which would describe low-lying states. Their
particular interest was in tracing the behaviour of the elements and eigencolumns of HB at
avoided crossings. The standard type of HB effective Hamiltonian was found to have various
defects in handling avoided crossings and intruder states. The 1987 paper proposed the use
of an intermediate Hamiltonian to give a better description of the Li2 system and the 1991
paper proposed an approach which leads to the solution of generalized rather than ordinary
eigenvalue problems to find the few low-lying eigenvalues which are to be followed as the
interatomic distance is varied.

It is important to note here that, since the emphasis of this review is on numerical rather
than algebraic methods, no specific choice of the orthonormal basis set for the Hamiltonian
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matrix has been imposed. In the work of authors (e.g., Bloch 1958) who set out to obtain
algebraic formulae for the terms in a perturbation series for the energy a specific choice is
imposed; the basis functions are the eigenfunctions of an unperturbed Hamiltonian and the
full Hamiltonian is obtained by the addition of a perturbing potential V , so that the matrix
elements of V will appear in the terms of the perturbation series. The choice of an A space
composed of Ho eigenvectors was made in the works of Kvasnicka (1977) and Svrcek and
Hubac (1987), which used a wave operator approach to derive algebraic expressions for the
low order terms in the perturbation expansion of some effective Hamiltonians. In a numerical
approach, once the matrix is formed it is in principle possible to choose the ‘unperturbed’
matrix in any way which facilitates the numerical calculation and many of the possible choices
for the ‘perturbation’ will not correspond to the matrix elements of any local potential operator
of the type which appears in the Hilbert space quantum mechanical operators initially used to
describe the system being treated.

2.3. Method 3. A full space approach

On passing from method 1 to method 2 in the preceding discussion the principal step was to
retain the concept of the F matrix but to remove the constraint that F should be given by an
E dependent equation. It was then found that by making F obey a nonlinear matrix equation
it was possible to find several different eigenstates using one effective Hamiltonian HB. In
method 3 the generalization is taken one step further, yielding several results which are useful
when H is an Hermitian matrix. A full space calculation of the spectrum of the H matrix is
carried out under the assumption that a matrix F exists but with the single property that it acts
as a constraint on the basis functions used; in the special case in which F is actually the same
one as that of method 2 then the constraint will in effect vanish, leading to exact eigenvalues
in the A space. Accordingly, a full space calculation is performed in which each basis vector
consists of the unit vector e(J ) in the A space plus a B space component which is obtained
by forming the product F(BA)e(J ). No assumption is made about the matrix F(BA) apart
from the obvious one about its necessary shape. For an A space of dimension M there will
then be M basis functions. The matrices of the full space Hamiltonian H and of the full space
unit operator I must be set up to give the appropriate matrix eigenvalue problem. A typical
(J,K) matrix element of H will take the form

[e(J ) Fe(J )]∗
(

H(AA) H(AB)

H(BA) H(BB)

) (
e(K)

Fe(K)

)
(2.15)

while the matrix elements of I are found by using the partitioned unit matrix instead of the
partitioned Hamiltonian matrix in the triple product. On noting that the complex conjugate
term on the left will produce an Hermitian conjugate term F † in the formal matrix algebra, it
then follows that the resulting matrix eigenvalue equation is in fact a generalized eigenvalue
equation of the form

[H(AA) + H(AB)F + F †H(BA) + F †H(BB)F ]X = E[I + F †F ]X (2.16)

which refers to the A space only (as a result of having constrained the B space components to
be equal to F(BA) times the A space components).

The operators on both the left and right of (2.16) are manifestly Hermitian, but appear in
a generalized eigenvalue equation for which the eigencolumns will not be orthonormal with
respect to the usual unit matrix metric. Because of the special way in which the basis set
was constructed it follows that the eigenvalues obtained will be upper bounds to the M lowest
eigenvalues of the full H, if the A space has dimension M. This result is true for any choice
of F(AB) and will be inherited by any form of effective Hamiltonian problem which arises
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from (2.16) by means of a similarity transformation. If the operator on the left of (2.16) is
provisionally denoted by HKV (variational Kato Hamiltonian) then by direct multiplication
using some of the results of the preceding section it can be seen that the equality

[I + F †F ][H(AA) + H(AB)F(BA)] = HKV(AA) (2.17)

holds for the special case in which F exactly obeys the nonlinear equation for the Bloch
reduced wave operator. For that special case equation (2.16) can be written in the apparently
redundant form which introduces the Kato effective Hamiltonian

[I + F †F ]HB(AA)X = HK(AA)X = E[I + F †F ]X. (2.18)

This is equivalent to the generalized eigenvalue equation of Kato (1949), although he
used a perturbation expansion and a quite different notation based on the algebra of projection
operators on the model and target spaces. In the notation used here the cancellation of
[I + F †F ] from both sides is obviously appropriate, giving the HB eigenvalue equation.
If the constraint matrix F does not satisfy f (F ) = 0 however, another form of eigenvalue
problem is obtained by multiplying (2.16) from the left by the inverse of [I + F †F ]. In the
compact notation introduced above this alternative equation takes the form

[I + F †F ]−1HKV (AA)X = HBV (AA)X = EX. (2.19)

The symbol HBV has been used here to denote what might be called a variational form
of HB. This form reduces to HB when F is exact but has guaranteed variational and upper
bound properties when F is only an approximation, such as that obtained from a perturbation
calculation of low order or from an iterative calculation which has not yet converged.

The method of using a constrained basis set calculation in order to arrive at the variational
form of HB (and of other effective Hamiltonians) is direct and natural within the matrix
partitioning method. Gadea (1991) derived equivalent versions of these variational forms via
a lengthy treatment involving the algebra of projection operators and cited some previous
works which had also mentioned these forms of the various effective Hamiltonians. He also
gave some test calculations for the Mathieu matrix eigenvalue problem to illustrate the superior
performance of the variational forms. Within the projection operator formalism the form of
an operator such as HBV is often obscured, since it is expressed by means of a formula
which sandwiches the simple symbol H between various groups of projection operators. The
terms appearing in equation (2.16) reveal the components of the H matrix which appear in
HBV and show that the (AA) effective operator is in fact quite complicated, since, as the
simple derivation showed, it represents a procedure for compressing into the A space what is
in essence a full space calculation.

Since method 3 involves a comparison of full space and A space calculations it is
appropriate at this point to make a comment about the normalization of eigencolumns. The
standard approach in using the effective Hamiltonian in the A space would be to normalize theA

space eigencolumns to unity; this convention is consistent with the intermediate normalization
convention adopted in a perturbation approach and so is used by most authors. However,
Hurtubise and Freed (1993a, 1993b, 1994) explored in detail how the normalization convention
adopted can complicate or simplify the construction of effective operators for operators other
than the Hamiltonian and pointed out the role played by the norm of the A space component
when it is the full space eigenvector which is taken to be normalized to unity. The study
of the fractional contribution of the A space part X of a full space eigencolumn naturally
involves the operator S(AA) = [I +F †F ], although in section (4.7) it is pointed out that for an
individual eigenvector this fractional contribution can be found numerically by a simple finite
perturbation technique. The conventions adopted in the matrix partitioning approach of this
review are consistent with those adopted by most authors; the full wave operator (denoted by
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W in this work and � by several authors) is defined to have the property that it gives back the
full space normalized eigenvector when it acts on the A space component of that eigenvector.

2.4. The matrix transformation approach

Instead of using the indices AB, etc to indicate the shapes of the various matrices appearing
in the theory, it is possible to adopt a more visual approach by displaying the matrices which
are used in a matrix similarity transformation of the original partitioned Hamiltonian matrix.
Equations (2.7) and (2.8) can be written in the form(

H(AA) H(AB)

H(BA) H(BB)

) (
I 0
F I

) (
X

0

)
= E

(
I 0
F I

) (
X

0

)
(2.20)

where F is the F(BA) introduced previously. A short calculation shows that the members of
the family of partitioned matrices of the form

T (F ) =
(

I 0
F I

)
(2.21)

have the multiplicative property T (F )T (G) = T (F + G), so that the inverse of T (F ) is
simply equal to T (−F). It thus follows that the triple matrix product T (−F)HT (F) will
give a similarity transformation of the H matrix which leaves the eigenvalues unchanged.
Equation (2.20) already has HT (F) on the left; left multiplication by T (−F) gives a
transformed partitioned Hamiltonian matrix with the components:

(AA) H(AA) + H(AB)F

(BB) H(BB) − FH(AB)
(2.22)

(AB) H(AB)

(BA) H(BA) + H(BB)F − FH(AA) − FH(AB)F.

Choosing F so as to render the (BA) portion of this transformed matrix zero requires
the solution of exactly the same nonlinear equation which was derived previously.
The (AA) portion of the matrix will then be uncoupled from the rest of the matrix, so
that the (AA) submatrix will produce some of the eigenvalues for the original full matrix. This
(AA) submatrix is, of course, precisely the effective Hamiltonian HB obtained previously.
It is clear from equation (2.20) that each eigenvalue of the effective Hamiltonian has an
associated eigencolumn with components X and Y = FX when regarded as a solution of the
untransformed problem. Thus the main features of the results of matrix partitioning theory
are reproduced in this alternative approach which displays the relevant matrix similarity
transformations. This approach will be applied in some of the later illustrative calculations.
Although the algebra and the calculations of the present work concentrate on the eigenvalues
associated with the small model space, it is worth noting in passing that the (BB) term in the
transformed matrix terms of (2.22) is an effective Hamiltonian with eigenvalues associated
with the larger B subspace. The A and B space effective Hamiltonians both appear in the
algorithms of Andreozzi (1996).

In the specialist literature of wave operator theory many authors set out the theory by
using the algebra of projection operators. Since the present discussion has been set out in
terms of matrix theory for the benefit of a more general readership, it is of interest to give
a short example of a translation between the two approaches, using some algebra given by
Kowalski and Piecuch (2000b). The following ‘dictionary’ sets out several of the operators in
partitioned matrix form. P and Q are the projection operators on the A and B spaces and W is
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the (full) wave operator. The Hamiltonian H takes its standard partitioned form as in earlier
equations. The principal quantities are

P =
(

I 0
0 0

)
Q =

(
0 0
0 I

)
W =

(
I 0
F 0

)
. (2.23)

By matrix multiplication the reader will be able to check that the wave operator W satisfies
the equations (with 0 interpreted to be the null matrix)

PW = P WP = W WQ = 0. (2.24)

Armed with these results one can then proceed by algebra (or by explicit matrix multiplication)
to obtain results such as

W 2 = WPW = WP = W. (2.25)

What is clear about this approach is that it explicitly sets to zero various sections of the
matrices. For example, the F matrix has been a principal quantity in the previous discussion.
The equations above show it as the B space part of a full wave operator W which acts only on
the A space and gives a result which has both A and B space components. To ensure that the
resulting AB vector is an eigenvector in the full space (i.e., that it belongs to the desired target
space) W must be constrained to obey some equation which is equivalent to the nonlinear
equation which has already been derived for the Bloch reduced wave operator. The required
equation is

WH = WHW (2.26)

which is usually called the generalized Bloch equation. Constructing the appropriate matrix
products on the left and the right of (2.26) leads to zero AB and BB submatrices on both sides,
together with identical AA submatrices equal to H(AA) + H(AB)F . The (BA) sections on
the left and right are equal to H(BA) + H(BB)F and FH(BA) + FH(BB)F , respectively.
Requiring these two (BA) sections to be equal simply gives again the nonlinear equation for F
which was previously derived using a matrix partitioning approach. Another equation which
is sometimes used in wave operator theory or calculations directly involves HB:

HW = W(HB). (2.27)

The validity of this equation also follows on working out the products of the partitioned
matrices on both sides; the AB and BB portions are zero, while the AA and BA portions on
both sides can be seen to be equal because of the equations which are obeyed by F(BA) and
HB(AA). Logrado and Vianna (1997) used an approach in which the initial model space is
an eigenfunction of the full perturbed Hamiltonian. Their resulting nonlinear equation for the
wave operator has an unorthodox appearance but a careful analysis of the definitions of the
potential terms used in it shows it to be another way of writing the standard generalized Bloch
equation which has been used by other authors.

In the work of Durand (1983) and other authors the projection operators for the model
space were given the symbols Po and Qo and an associated target space was introduced
explicitly and assigned the projection operators P and Q. Various effective Hamiltonians were
then described using the formal operator PoPPo, which is, of course, unknown at the start
of a calculation. The link of this approach with that described above was that (PoPPo)

−1

was equal to the product W †W , where W was the wave operator matrix which was defined in
equation (2.23) above; this product also equals the matrix [I + F †F ](AA) introduced earlier.
Durand (1983) derived the generalized Bloch equation (2.26) and also transformed the
formulae involving the unknown P to obtain expressions for the various effective Hamiltonians
which involve only Po and the full or reduced wave operator. If the labels A and B are
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suppressed in the various submatrices inside the product then the nonlinear equation for the
reduced wave operator can be written in the full matrix factorised form

Q[I − F ]H [I + F ]P = 0. (2.28)

The work of Meissner and Nooijen (1995) used this equation as well as a partitioned matrix
approach where the projection operators P and Q are taken to be the projection operators for
the A space and the B space, as in equations (2.23) This factorised form displays more clearly
that a matrix similarity transformation is involved, since the terms in square brackets represent
the transformationsT (−F) and T (F ) introduced previously. In equation (2.28) the full matrix
form of the matrix H includes all its four submatrices and the full form of matrix F has three
zero submatrices as well as the F(BA) submatrix which has been studied previously. The
appendix gives an example of how equation (2.28) is modified for the time-dependent case, as
a foretaste of the subject matter of part 2 of this review.

A careful study of the projection operator formalism used by Durand and other authors
yields two useful translations between that formalism and the simple approach via partitioned
matrices which is used throughout part 1 of the present review. In the operator approach the
composite operator (PoPPo)

−1 plays a prominent role but has to be explained as operating
only in the model space, so that it is not an inverse in the usual matrix sense. The corresponding
quantity in the partitioned matrix approach described here is just the matrix [I + F †F ](AA),
which is given the shorter symbol S(AA) or simply S in some parts of the discussion.
The projection operator onto the target space is denoted by P in Durand’s work, whereas
in the present work P is the projection operator onto the fixed model A space (that operator
being the Po of Durand). In the notation of the present work the projection operator onto
the target space (i.e., the space of the actual full eigenvectors) corresponds to the partitioned
matrix which has the four non-zero sections

(AA)S−1 (BA)FS−1 (AB)S−1F † (BB)FS−1F †. (2.29)

Matrix multiplication quickly shows this partitioned matrix to be equal to its own square.
When the matrix acts on an eigencolumn with the A part X and the B part Y = FX then it
simply reproduces that eigencolumn. With these two translations and the ones for W (denoted
� by Durand) and P and Q (the Po and Qo of Durand) it is possible to translate much of the
operator theory in the literature into the partitioned matrix language of the present work; the
identity P + Q = I can be used to work out unusual terms.

Using the symbol P of Durand for the operator described by equation (2.29) and
remembering the previous comment about the meaning of the symbol (PoPPo)

−1, the reader
can confirm that the wave operator W of equation (2.23), the � of Durand, can be written in
the product from P(PoPPo)

−1, which is used by several authors.
An interesting example of the way in which the matrix or the operator notation can be the

more appropriate depending on the circumstances is provided by section 3 of the chapter by
Löwdin (1966) on partitioning methods. That work contains the projection operators P and
Q of equation (2.23) (although they are O and P in Löwdin’s notation) and also an operator T
which is easy to see in matrix form; it has three zero sections and a non-zero BB section which
contains the inverse of [EI(BB) − H(BB)]. To express this in operator terminology is not
totally straightforward; Löwdin produced the operator expression (translated into the notation
of the present review) T = Q[aP + Q(E −H)Q]−1Q for it, where a is any non-zero number,
and then established that dT/da = 0. Direct study of the matrix with [EI(BB) − H(BB)]
in the BB block and with all other sections zero shows that putting aI (AA) in the AA

block leads to an invertible matrix and that the BB block of the inverse is just the inverse
[EI(BB) − H(BB)]−1, for any value of a, provided that it is non-zero. Thus Löwdin’s
operator result is easily seen by a visual inspection of the matrix representation, which further
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shows, incidentally, that taking the limit of a tending to infinity also gives a zero AA block
in the inverse and thus matches to the full T matrix and not just to its BB portion. Löwdin
used the operator formalism to derive what is essentially the HL theory of this review, except
that he used a one-dimensional A space and so produced an energy expectation value rather
than an effective Hamiltonian. He then applied the operator formalism to obtain various
perturbation results; to do this he took the single A space function to be an eigenfunction
of the unperturbed Hamiltonian, so that his wave operator W simply converts that single
unperturbed wavefunction into the perturbed one.

The present review stresses the matrix approach to transformations. In an approach
which uses the underlying Hilbert space operators rather than their matrix representations
a transformation approach usually leads to a formalism involving operator commutators,
particularly when the formalism of second quantization is employed. Two recent examples
are the work of Alexian and Moreno (1999) on coupled oscillators and the work of
White (2002) on molecular systems. Matrix commutator algebra also appears in the equations
of motion approach to many-body theory (Dalgaard and Simons 1977). However, probably
the best known form of perturbation theory which involves commutators is the Van Vleck
perturbation theory, which uses a transformation operator of the form exp(G), where G is
an anti-Hermitian operator. G is usually taken to be a perturbation series in the perturbing
potential V and is chosen so as to produce a transformed Hamiltonian in which the terms up to
some specified order in V have been removed. Jordahl (1934) gave one of the first accounts of
the low-order theory for a non-degenerate level. A detailed account of Van Vleck theory was
given by Kemble (1958). Kirtman (1968) gave the low-order theory for an initially degenerate
level, treating the hydrogen atom Stark effect. Jorgensen, Pedersen and Chedin (1975) gave a
detailed modern development of the Van Vleck theory, with references to earlier work. Much
of this earlier work did not use a wave operator approach and so is not central to the point of
view adopted in the present review; however, the more recent works of Hoffmann (1996) and
Khait et al (2002) on generalized Van Vleck perturbation theory did stress a wave operator
approach.

2.5. Alternative forms of the effective Hamiltonian

It should be emphasised that the brief account given here of various effective Hamiltonians is,
like several modern accounts, based on ‘wisdom after the event’. The original works of the
various authors who created the central concepts of wave operator theory were often conceived
in a spirit quite different from that of modern interpretations of their work. For example,
some of the early work was based on a perturbation approach to various projection operators
or was restricted to the case of an A space with exactly degenerate unperturbed energies.
An overall view which unifies large portions of the earlier work has only been achieved
in fairly recent times and even then there are several competing forms of synthesis, each
one stressing some central concept (e.g., transformations, resolvents) in terms of which earlier
work can be systematized. One example of some importance is provided by the Des Cloizeaux
effective Hamiltonian HD (described below). Many Hermitian effective Hamiltonians had
been proposed in the literature of perturbation theory but it required a detailed analysis to
show that several of them were identical to HD, so that HD is nowadays often referred to as
the canonical effective Hamiltonian in the family of Hermitian effective operators derivable
from an Hermitian H. The work of Klein (1974) was one of the early ones to investigate
the links between various effective Hamiltonians. Klein established that HD is the same
as the effective Hamiltonians of various other authors who had used a range of apparently
quite different techniques to define their own effective Hamiltonians. Although Klein’s work
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contained a few technical defects which were later pointed out and rectified by other authors
such as Jorgensen (1978) and Brandow (1979) his main conclusions were confirmed by later
work. In particular, Klein’s ‘proximity’ test was both explored and modified by later workers
(Jorgensen 1975, Brandow 1979, Cederbaum et al 1989). The technical details of the various
forms of the test can be found in the cited works but the main thrust of them is that the unitary
transformation T which produces pre-assigned diagonal blocks in the transformed H matrix
and which itself remains as close as possible to the unit matrix (in an appropriate matrix norm)
will lead to the canonical form of the Hermitian effective Hamiltonian. A similar kind of
‘proximity’ result holds for the canonical orthogonalization method of Löwdin (1950) and,
indeed, helps to explain the role which it plays in one of the approaches to the construction of
the canonical effective Hamiltonian HD; Mayer (2002) gave a succinct modern derivation of
some aspects of the theory.

The concentration on unitary transformations necessarily leads to HD; in the present
work HD is only approached indirectly via the quantities F and HB and the approach via
HB only requires that the (BA) portion of the H matrix shall be rendered zero, whereas the
approach via unitary transformations aims at a total decoupling in which the (AB) portion
is also rendered zero. The most obvious result which emerges in any numerical application
of the techniques described above is that the Bloch effective Hamiltonian HB which arises from
the reduced wave operator F is non-Hermitian. This feature arises from the requirement that
the subspace eigenvectors shall be the exact A space components of the full space eigenvectors.
If the full matrix is Hermitian, then the fact that the eigenvectors must be orthogonal in the full
space means that the components within the A space will in general not be orthogonal when
the inner products are restricted to the A space. Thus the effective Hamiltonian within the
model space will not in general be Hermitian. This does not change the eigenvalues, which are
still a selection of those for the full space problem. From a linguistic point of view it is perhaps
unfortunate that the term ‘effective Hamiltonian’ has become standard, first since there is an
intuitive expectation that a Hamiltonian should in principle be Hermitian and secondly since
the mathematical formalism is very general and does not even specify that the full matrix
should be symmetric or Hermitian; the wave operator approach can be (and frequently has
been) used for matrices which have complex elements. It is clear that changing the effective
Hamiltonian HB to T −1HBT to render it Hermitian will simply change the eigencolumn X
to T −1X; to restore the original (X, Y ) Bloch pair then needs an appropriate modification
of the transformations involved. One way to modify the form of the effective Hamiltonian
is to multiply equation (2.20) from the left by the Hermitian conjugate of T (F ) rather than
by the inverse of T (F ). The resulting matrix equation has an (AA) component which is exactly
the same as that which is obtained by simply multiplying the Bloch effective Hamiltonian
equation by the SPD matrix [I + F †F ], which for brevity will be denoted by S(AA) in the
rest of this discussion. The resulting (AA) component equation is then just a repetition of the
HK generalized eigenvalue equation which has already been introduced and which has been
seen to give rise to the effective Hamiltonians HKV and HBV .

In a review of methods of treating the generalized eigenvalue problem in quantum
chemistry Ford and Hall (1974) discussed several techniques for converting a generalized
eigenvalue equation into an equivalent ordinary eigenvalue problem. Most of them have been
used in the wave operator literature. One standard way to produce an eigenvalue equation
from a generalized eigenvalue problem has already been applied; HBV was produced from
the Kato equation by multiplying by the inverse of S(AA). The resulting operator HBV ,
although having useful variational properties, was not Hermitian. However, an alternative
procedure is to note that the SPD matrix S(AA) will have exactly one SPD square root matrix,
which will be denoted by R(AA) in the rest of this discussion. Starting from (2.18) and (2.16)
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and multiplying from the left by the inverse of R(AA) produces the following eigenvalue
equations:

HD(AA)(RX) = R[H(AA) + H(AB)F(BA)]R−1(RX) = E(RX) (2.30)

HDV (AA)(RX) = R−1HKV (AA)R−1(RX) = E(RX). (2.31)

The traditional Bloch effective Hamiltonian HB appears in the central square bracket in
equation (2.30); the new transformed effective Hamiltonian arising from it has been denoted
by HD and is the canonical Hermitian effective Hamiltonian of Des Cloizeaux (1960),
which has been derived by many different routes in the literature. The alternative form in
equation (2.31) has been denoted by HDV and equals HD if F is an exact solution of the
nonlinear equation for the reduced Bloch wave operator. Clearly, HD is not manifestly
Hermitian; that it must be Hermitian follows from the fact that it can be shown to be the
transformed form of the effective Hamiltonian when the Löwdin symmetric orthogonalization
technique is applied to the A space projections of the full space eigencolumns (not to the actual
normalized HB eigenvectors) Brandow (1979) suggested that the effective Hamiltonian HD

should be rendered manifestly Hermitian by taking one half of the sum of HDand its Hermitian
conjugate. However, as can be seen from equation (2.31) HDV involves manifestly Hermitian
expressions and, through its equivalence to HD, reveals the Hermitian form of the effective
Hamiltonian HD in those cases in which the F used is an exact reduced Bloch wave operator.
HDV necessarily inherits the variational and upper bound properties of HBV but also has the
property that it maintains its Hermitian form even when the F used in it is only an approximate
and not an exact solution of the nonlinear equation for the Bloch reduced wave operator. This
property would also hold for Brandow’s symmetrized form of HD.

The explicit construction of HD from HB, which has itself been found from F, will
require the formation of the matrix S(AA) and of its square root R(AA) and also the inverse
of R(AA). In the literature the use of power series expansions or of matrix diagonalization
methods has been proposed for the calculation of these matrices. Section (3.2) of this review
describes a modern technique which is very effective when the elements of the F matrix
are small. If it is only the eigenvalues which are needed then those for the form HB are
directly obtainable from the relevant eigenvalue equation while those for HK or HKV can
be found by solving the associated generalized eigenvalue equations; as has been noted above,
the HKV spectrum will differ from those of HB and HK if F is not exact. It is clear
that different but equivalent forms of Hermitian effective Hamiltonian can be constructed
by using different orthogonalization techniques on the Bloch eigenvectors. Evangelisti et al
(1991) have suggested the use of Schmidt orthogonalization in some cases. The canonical
orthogonalization process is another possible technique and involves the diagonalization of the
matrix S(AA) studied above. Yet another approach (also from the Ford and Hall repertoire!)
is to note that S can be expressed not only in the form R2 but also in the form LLT where
L is a lower triangular matrix, for which the calculation of the inverse is relatively easy.
This decomposition of S then leads to an eigenvalue equation for the non-canonical effective
Hamiltonian

HA = LT [H(AA) + H(AB)F(BA)](LT )−1 (2.32)

which has the variational partner

HAV = L−1HKV (AA)(LT )−1. (2.33)

The symbols HA and HAV have been used to denote these two Hermitian effective
Hamiltonians, since Andreozzi (1996) noted the value of the LLT decomposition in his
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study of effective Hamiltonians. Orthogonalizing the Bloch eigenvectors by means of the
Schmidt process, which Evangelisti et al (1991) mentioned as sometimes useful, will give
the same HA as the LLT decomposition (but only if the vectors are selected in the correct
order).

Calculations which apply the various formalisms described above involve technical steps
such as the extraction of matrix square roots, the solution of generalized eigenvalue equations,
etc, as well as the solution of the nonlinear equation for the Bloch reduced wave operator
F. Later sections of this review will set out some calculational methods which can be used
to deal with these technical problems. Inspection of both the energy-dependent and energy-
independent formalisms shows that the E which appears in the equations is not any particular
specified eigenvalue, except for the proviso that it must be such that it has an eigenvector
with a non-zero component X in the A subspace which has been chosen. This means that in
principle any eigenvector of the full space problem should be obtainable via the wave operator
formalism. F obeys a nonlinear equation and it is well known that in general such equations
have many exact solutions and even more approximate solutions. For this particular matrix
problem it is clear how the many exact solutions arise. For example, if the subspace A is taken
to be one dimensional and the full matrix is of N ×N type, then N eigenvalues would in general
be expected and could be regarded as the roots of a polynomial equation of degree N. It would
then be expected that there should be N different solutions of the nonlinear equation for F, one
solution for each of the eigenvalues, since the 1 × 1 effective Hamiltonian is directly equal to
the eigenvalue. If the A subspace is M dimensional then an even greater number of solutions
for F would be expected, corresponding to the possible selections of M eigenvalues at a time
from the N possible eigenvalues. In most applications, however, an attempt is made to select
the subspace A so that the component X is dominant, with the influence of the B subspace
being regardable as some form of perturbation. In such an approach it is often natural to use
a perturbation expansion in which the coupling between the A and B subspaces is multiplied
by a perturbation parameter λ and the various quantities appearing in the theory are derived as
power series in λ. This approach naturally tends to pick out those particular solutions which
correspond to an F with small numerical components, leading to those eigenvectors which
have the largest components in the A subspace. To emphasise this, most authors in the field
have used the concept of a target space as well as that of a model space, with the notion that
the model space spectrum should give an accurate description of the group of exact eigenstates
which form the target space. Strictly speaking, of course, the exact target space is not known
at the start of a calculation, although it enters into the formal algebraic theory via its projection
operator P, with the model space projection operator being denoted by Po.

It should be stressed that in this review the authors have chosen to take what experience
suggests to be the most simple route through the theory of effective Hamiltonians. This
route first finds the wave operator and then constructs the Bloch effective Hamiltonian. Any
desired derivative forms such as the canonical Des Cloizeaux form are then constructed by
making appropriate calculations using those two previously constructed quantities. This
way of approaching the theory places emphasis on rendering zero the H(BA) portion
of the Hamiltonian matrix, thus achieving the decoupling transformation which leads to
the Bloch theory. However, there exists another approach in the literature in which a
full decoupling is attempted in one direct step; in this approach the H(BA) and H(AB)

portions of the Hamiltonian matrix are rendered zero simultaneously by using a unitary
transformation which leads directly to an Hermitian effective Hamiltonian (usually the Des
Cloizeaux one). Although the work of Des Cloizeaux (1960) is the best known one in
this tradition, the work of Choi (1975) and that of Speisman (1957) have some interesting
features. Choi’s algorithm, although used to produce algebraic expressions, appears to be
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capable of a purely numerical implementation which would construct the canonical effective
Hamiltonian directly. The present authors have not had sufficient time to investigate the
associated programming difficulties but consider Choi’s algorithm as an interesting topic for
further research. Speisman’s work involves some lengthy algebraic manipulations but has the
interesting formal feature that it manages to incorporate what is essentially the Bloch F matrix
of the present work into a unitary (rather than just a similarity) type of transformation; it thus
succeeds in obtaining the canonical effective Hamiltonian directly, rather than incorporating
factors involving the S(AA) matrix afterwards to convert HB into HD. Both of the works
just cited proceed by deriving algebraic expressions for the low-order terms of the perturbation
series for the effective Hamiltonian and they deal only with the case of a set of unperturbed
states which initially belong to the same degenerate energy level. Nevertheless this method
of approach via the direct construction of an effective Hamiltonian, although not as simple as
that via the wave operator concept, appears to compare favourably with the more traditional
approaches to degenerate perturbation theory which have to vary their treatment according
to the order of perturbation at which the degeneracy is removed; Hirschfelder (1969) gave
an account of this traditional approach and Larcher and Chong (1969) gave an account of
it in terms of a sequence of operations on appropriately constructed matrices. Choi (1969)
treated degenerate perturbation theory by a repeated partitioning approach which reduced
the treatment of each level split off from an initially degenerate level to that of a single
nondegenerate level.

The approach which is adopted in the present review and in most works on wave operator
methods is to keep a fixed set of basis functions in the A space. The eigenvectors of the
effective Hamiltonian HB are then termed ‘bonne fonctions’ by some authors, since they are
correctly aligned along the A space components of the full space eigenvectors, so that the F
matrix will generate the B space components from them. In the approach adopted by workers
such as Certain and Hirschfelder (1970) and Hirschfelder (1978) the initial concept used is
that of a small space of exact eigenvectors of H; the perturbation expansions used are then
seeking to produce this space starting from an equal number of unperturbed eigenvectors.
At each stage it is the full Hamiltonian H which is used in the matrix diagonalizations
associated with each order of perturbation and the calculations can be regarded as being
generalized matrix eigenvalue calculations for the matrix of H set up in a basis of RS perturbed
eigenfunctions. This appears to set the Certain and Hirschfelder approach in the same tradition
as the full space calculation set out as method 3 in this review, which also uses the full H to
obtain variational behaviour. However, method 3 condenses the effect of the full space
calculation into the variational effective Hamiltonian HBV and this operator acts in the fixed
A space. In an appendix of their paper Certain and Hirschfelder (1970) demonstrate that the
energies given by their approach at each order are equal to those which can be obtained by a
perturbative method based on the use of the Löwdin operator which has been denoted by HL

in the present work.

2.6. An implicit equation for HB

Since F and HB are closely related and since F obeys a nonlinear equation in its own right it
seems natural to anticipate that HB might also obey some nonlinear equation. Des Cloizeaux
(1960) derived such an equation, which turned out to be much less convenient than the one
obeyed by F. In several of the iterative and perturbative calculations of the present review
the equation for F has been cast in a hybrid form which gives equal emphasis to both F and
HB and which has been found to be more useful in numerical work. However, a derivation
of the implicit equation for HB is given below, since it gives some extra insight into the
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relationship between the effective Hamiltonians HL and HB and also into the common
practice of choosing the unperturbed energy levels in the model space to be degenerate.

The first step in the derivation is to assume that all the levels in the model space start
off with the common energy e and that both HL and HB have been redefined so that they
describe the level shifts and splittings which are produced by adding a perturbing potential V .
To emphasise this it is useful to write HB in the form

HB = eI (AA) + V B (2.34)

and HL in the form

HL(E) = eI (AA) + V L(E) = eI (AA) + V (AA) + T V (1, E) (2.35)

with

T V (N,E) = V (AB)[EI(BB) − H(BB)]−NV (BA). (2.36)

For the X component X(E) of an eigenvector with the eigenvalue E the theory developed in
the preceding sections makes it clear that the following equality must hold

(E − e)X(E) = (V B)X(E) = V L(E)X(E) (2.37)

where by definition V B is the same for all the possible eigenvalues E but V L(E) depends on
E. V L(E) can be formally expanded about the reference value e to give the result

V L(E)X(E) = [V L(e) − T V (2, e)(E − e) + T V (3, e)(E − e)2 . . .]X(E). (2.38)

The crucial point about this expansion is that (E − e) behaves just like a pure number and
so can be moved to the right through all the other terms which appear in the expression for
V L(E). When the expanded V L(E) acts on X(E) it is thus possible to replace the powers of
(E − e) by powers of V B. If it is then assumed that the set of X(E) for varying E forms a
basis for the model space then the results above can have the operand X(E) removed in order
to obtain an operator equation in which E does not appear

V B = V L(e) − T V (2, e)V B + T V (3, e)V B2 . . . . (2.39)

This equation can be solved iteratively to give a sequence of solutions:

V B(1) = V L(e) V B(2) = V L(e) − T V (2, e)V L(e) (2.40)

V B(3) = V L(e) − T V (2, e)V L(e) + [T V (2, e)]2V L(e) + T V (3, e)V L(e). (2.41)

In principle the terms T V (m, e) can be obtained by solving a sequence of sets of linear
equations. However, although the formal results shown above have sometimes been used to
obtain algebraic perturbation expansions they are not well adapted to numerical calculations.
In the case in which the initial set of levels in the model space is not degenerate the absence
of a common scalar factor (E − e) makes the simple approach used above inapplicable.
Durand and Paidarova (1996) gave a formal treatment of the more general case but the
apparent simplicity of their implicit equation for the effective Hamiltonian was only obtained
by introducing superoperators which reverse the order of some operators acting between the A

and B subspaces and which if used in numerical work would in principle involve the inversion
of large matrices. Since the first approximation to V B obtained above is V L(e), which will be
Hermitian, it seems that a simple way to proceed in the quasidegenerate case would be to use
HL(e) for some appropriate average e value, then form the resulting approximate F and use
it in the variational effective Hamiltonian HBV to obtain reasonably accurate eigenvalues.
Such an approach would be useful if the linear equations appearing in the HL calculation
were being solved by a Gauss–Seidel method which does not converge for E values which are
towards the top of the model space spectrum.
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2.7. The use of three subspaces

The simple theory and calculations set out in the preceding sections use only two subspaces,
the model space and its orthogonal complement. In the formal theory of the wave
operator the (unknown) target space and its orthogonal complement are also sometimes
introduced, so that four subspaces appear in the theory. Most of the numerical test calculations
of the present work use only the known A and B subspaces, with various kinds of folding
process to incorporate the influence of the B space basis functions into an effective Hamiltonian
in the A space. This approach can be extended to a cascading folding process involving more
than two subspaces; the most trivial example of this is the folding method for matrix eigenvalues
(section 3.3). Several authors have made theoretical or calculational use of three subspaces.
Barrett (1974) described the history and use of the doubly partitioned Hilbert space method
in nuclear theory. In this approach a few shell model states form the A space and the excited
state basis functions which would usually be the B space are partitioned into a B part and a C
part, with the C part containing the high energy basis states. Leaving aside highly specialized
technical details the calculation can be roughly described as one in which the C → B folding
produces a less singular effective potential based on the Brueckner reaction matrix (which
obeys an implicit equation similar to that in BW theory) and then the B → A folding uses
this effective potential in an effective Hamiltonian calculation in the A space.

In atomic theory Taylor (1974, 1983) made use of an approach in which three subspaces
are used. The A subspace contains the approximate atomic or molecular groundstate, which
could be taken to be a determinantal function in which the orbitals have been found by the
Hartree–Fock method. Brillouin’s theorem will then ensure that only doubly excited fuctions
will be directly linked to the groundstate function by the residual perturbation which describes
correlation effects. In the simple linear equation of perturbation theory with the intermediate
normalization convention the energy shift depends only on the coefficients of those directly
coupled states in the perturbed wavefunction. However, there will also be a small indirect
influence from the singly excited states, which are still coupled to the doubly excited states.
If the excited state basis functions are partitioned into a B space of doubly excited functions
and a C space of singly excited functions, then the matrix portion (AC) will be zero. This
simplifies the form of the partitioned eigenvalue problem. The C → B folding gives an extra
effective potential term which modifies the effective B → A coupling and so gives an extra
correlation energy shift at the B → A folding stage.

A triply partitioned space was also used by Jolicard and Billing (1990); figure 1 of their
paper gives a partitioned matrix view of their procedure. Their iterative calculation makes use
of diagonalization in the A space together with first-order recursive distorted wave (RDWA)
transformations intended to reduce first the CA coupling and then the BA coupling. The final
result is an A space which is decoupled from the B and C spaces; the original feature is that
the B space (the intermediate space) is generated during the calculation as being formed by
states which (at a given step) still have an appreciable remaining coupling with the evolving A

space eigenstates. This B space acts as a kind of ‘buffer space’ which cuts down intruder state
problems. The second-order perturbation method of Staroverov and Davidson (1998) also
used three spaces, with the inner two spaces being called the reduced and full model spaces;
the reduced model space refers to the basis functions which dominate in the wavefunction of
the actual state being calculated and an iterative process has to be used to determine effective
Hamiltonians in the two spaces. Khait and Hoffmann (1998) also used three subspaces in a
process which refines the inner model space by an iterative procedure very similar to that used
by Jolicard and Billing (1990). The recent work by Durand et al (2000) on resonances in H+

2
set out a range of useful techniques. The Bloch wave operator approach is applied to a large
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non-Hermitian matrix and the space of basis functions is partitioned into three subspaces to
improve the convergence of the iterative calculation of the wave operator. Further, the iterative
method used is of ‘almost’ second order, being a computationally convenient approximation
to a Newton–Raphson calculation.

In this review (and in much of the literature) a matrix or operator point of view is adopted.
Although the F matrix obeys a nonlinear equation it is given by a simple linear formula in
first order. It is thus of interest to note that Dalgarno and Lewis (1955) introduced a quantity
f as the ratio of the first-order perturbed wavefunction to the unperturbed wavefunction in
their treatment of the one-dimensional perturbed Schrödinger equation. In their differential
equation formalism f then was found to obey a linear differential equation. Young and
March (1958) used the notation of Speisman (1957) in giving an account of the relationship
between the operator form of perturbation theory and the use of the f function in a differential
equation approach. They pointed out that in principle the technique can be extended to higher
orders of perturbation theory. Later workers developed much further the original ideas of
Dalgarno and Lewis and Young and March, developing logarithmic perturbation theory and
other techniques in the differential equation approach to the Schrödinger equation. Au (1997)
gave a brief account of the history and recent developments of this area of theory, which is
only mentioned here because of the partial resemblance between the f of Dalgarno and Lewis
and the F matrix of wave operator theory.

2.8. Partitioning methods in engineering

A search of the engineering literature reveals that the use of matrix partitioning has been
widespread in vibration theory for some time; Dong et al (1972) cite papers as far back as
1909. They also describe a method of iterative calculation which makes use of the equivalent
of the wave operator W of the present work. In some respects it could be said that the
partitioning method of vibration theory is more general than that of quantum mechanics,
since it has always been formulated in terms of the generalized eigenvalue problem rather
than the ordinary eigenvalue problem. However, with a little thought it is not difficult to
rewrite the theory associated with the energy-dependent effective Hamiltonian HL in a style
which is appropriate to a generalized eigenvalue problem. Using the symbol S temporarily in
this paragraph to denote the overlap matrix of the basis function, this generalized eigenvalue
equation takes the form(

H(AA) H(AB)

H(BA) H(BB)

) (
X

Y

)
= E

(
S(AA) S(AB)

S(BA) S(BB)

) (
X

Y

)
. (2.42)

The formal device which simplifies the algebra (and which is sometimes useful in calculations)
is to rewrite this equation by putting H − ES on the left, with a formal zero eigenvalue on
the right. The whole of the partitioning theory presented previously can then be carried out
with the matrix H replaced by the matrix G = H − ES. The final reduced equation for X
can then have its −ES(AA) term separated off to the right-hand side again to give an A space
generalized eigenvalue problem of the form

[H(AA) − G(AB)G(BB)−1G(BA)]X = ES(AA)X (2.43)

which can be used to treat the generalized eigenvalue problem in an iterative calculation
similar to that used for HL, provided that it is remembered that for a generalized eigenvalue
problem the Rayleigh quotient for a trial column involves division by the expectation value
of the metric matrix S (rather than that of the unit matrix). The derivation sketched above
is a translation into the present context of a method which has appeared in various guises
in the engineering literature, where it is written in terms of load patterns, stiffness and mass
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matrices, etc, and where the eigenvalue is the square of a vibrational angular frequency and
so is a positive number if the reference equilibrium configuration of the structure considered
is a stable equilibrium. (The presence of complex eigenvalues would indicate that the initial
equilibrium was unstable.) Multiplying (2.43) from the left by the inverse of S(AA) gives an
eigenvalue equation involving an energy-dependent effective Hamiltonian which is the most
natural generalisation of HL for the case of a non-orthonormal basis. De Andrade and Freire
(2003) have recently given a detailed analysis of this operator and of several other effective
Hamiltonians which can be used when the basis is non-orthonormal.

A careful translation of one of the iterative methods described by several authors (Geradin
1971a, 1971b, Dong et al 1972, Popplewell et al 1973, Shah and Raymund 1982) was made
by the present authors, since it is often cited as being of guaranteed convergence. In terms of
the concepts of the present work (and posed in terms of the ordinary eigenvalue problem) the
method proceeds by starting with an approximate wave operator W , for example from first-
order theory, and then solving to find the eigencolumns of the A space generalized eigenvalue
problem which arises when the full partitioned H matrix eigenvalue is multiplied from the
right by W and from the left by W †. (This is in effect the use of the operator HBV .) A
set of approximate full eigencolumns is then constructed, using the W operator to form the
B space components. This set of columns is then acted on by the inverse of the full matrix
H to give a new W , which is then used in the next cycle, and so on. (With a positive
definite H this operation with the inverse could be replaced by a Gauss–Seidel solution of the
appropriate linear equations.) The reason for the convergence of the method is clear from this
description, since the method is in effect the inverse power method, which would tend to drive
any column towards the eigencolumns with eigenvalues at the bottom end of the spectrum. The
intervening step of using HBV or its equivalent is simply a means of separating out M columns
(for an A space of dimension M ) to produce the M lowest levels of the spectrum of H rather
than M copies of the groundstate. One of the works in the engineering literature which gave
an account of the method in a spirit somewhat similar to that adopted in the translation given
above was that of Lam and Bertolini (1994), who modified the inverse iteration part of the
calculation in an attempt to speed up the rate of convergence.

For an H which is not positive definite an appropriate shift would have to be used.
Alternatively the use of (H − e) would tend to pick out the spectrum in the vicinity of e. A
similar technique was used in the variational Rayleigh iteration method of Killingbeck and
Jolicard (1996), which used a variational principle which allows the effect of the operator
(H − e)−2 on a vector to be estimated by using the positive power (H − e)2. The filter
diagonalization techniques for matrix eigenvalue calculations have also used various localized
functions of H to concentrate attention on specific parts of the eigenvalue spectrum (Iung
et al 1993, Wyatt 1995, Jolicard et al 1996, Minehardt et al 1997, Alacid et al 1999).
Nakatsuji (2002) recently developed a theory for the inverse shifted Hamiltonian based on the
traditional theory for the Hamiltonian, with an inverse Schrödinger equation and an associated
variational principle. That work was a development of his earlier work on the structure of the
exact wavefunction (Nakatsuji 2000), which gave various theorems about the representation
of an atomic or molecular wavefunction in terms of single and double excitation functions.
Nakatsuji and Ehara (2002) later showed that this approach was efficient in producing full
configuration interaction results while using a sequence of iterations in each of which only a
small number of variables is involved.

There are methods, however, which directly use positive powers of (H − e) in their own
right, usually by varying a trial vector in order to minimize the expectation value of (H − e)2;
Feller (1974) described an approach of this type. A few preliminary calculations suggest that
for small matrices the random search method used for the wave operator in section (4.2) can
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also be used for this type of calculation, although it is obviously far less efficient than other
methods.

2.9. The wave operator in atomic and molecular theory

A search under the headings ‘perturbation theory’ and ‘wave operator’ on a modern scientific
database yields several thousand references. It is thus only possible here to refer to a
few selected works which illustrate some typical features of wave operator or perturbation
techniques, although further references are scattered throughout other sections. One of the
standard models of simple molecular orbital theory is the π electron theory of conjugated
planar molecules. The early history of the Huckel and other semi-empirical approaches to this
theory are set out in books such as that of Parr (1964). The more modern attempts to justify the
earlier work from first principles include that of Harris (1967) using Van Vleck theory and that
of Freed (1972), which started from an HL effective operator of the type used in the present
work. Probably the most comprehensive work on the topic was that of Brandow (1979), which
used several different forms of effective Hamiltonian and also gave a good review of general
theory.

Authors who tackled molecular problems by using RS perturbation theory in its traditional
form, which requires the sequential calculation of the perturbed wavefunctions of each order,
include Laidig et al (1985), Knowles et al (1985) and Olsen and Fulscher (2000). In the
majority of the works dealing with molecules the approach has been to concentrate on
producing such a good first approximation to the wavefunction that the use of only the
first-order wave operator and of second- or third-order perturbation theory will suffice to give
accurate results. A study of the formula for the first-order wave operator shows that it does
not involve the off-diagonal Hamiltonian matrix elements in the B space; this serves to make
the calculations more easy. Setting these off-diagonal elements to zero to simplify the higher
order calculations gives what is called the BK approximation. When the A space is taken
to contain several important basis functions and a preliminary diagonalization has yielded a
good first approximation to (say) the ground state, then there are two ways to proceed when
considering the second-order effects due to the many basis functions in the B space which are
weakly coupled to the chosen one in the A space. The calculation can simply leave the chosen
state unchanged and work out the diagonal part of the effective Hamiltonian as an energy shift
(if the energy gaps in the A space are already fairly large) or it can allow a readjustment of
the original coefficients in the initial state vector because of the second-order coupling terms
in the effective Hamiltonian; this second approach is called ‘coefficient relaxation’ by some
authors and it sometimes requires very careful reading to ascertain whether it has been used.
An early use of second-order perturbation theory was the H2 calculation of Schulman and
Kaufman (1970), while a more recent example was the work of Illas et al (1991) in which the
A subspace was gradually enlarged to ensure that the effect of the many B space configurations
could indeed be described well by second-order theory. Works which carefully showed the
sum over states expansions of the effective Hamiltonians which they used include those of
Wang and Freed (1989a, 1989b), Graham and Freed (1992), Kozlowski and Davidson (1995)
and Nakano et al (2001). Works which made explicit use of the Bloch equation and the
first-order wave operator include those of Finley (1998a, 1998b), Finley and Hirao (2000) and
Choe et al (2001). Gwaltney et al (2000) derived the terms in their effective Hamiltonian
by starting from a matrix partitioning approach and the HL operator. De Graaf et al (2001)
used second-order perturbation theory to study magnetic couplings in ionic insulators and
Chakravorty and Davidson (1996) used it to improve the Z−1 expansions for the energy of
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atomic ions. Parisel and Ellinger (1996) gave a lengthy account of the use of second-order
perturbation theory in molecular calculations, with many references.

Perhaps the best known case of intruder state effects in atomic theory is that provided
by the Be atom, for which any reasonable initial approximation shows the ls 2s3s singlet
state to lie between the 1s2s2 and the 1s2p2 singlet states, whereas the true ground state is
dominated by the latter two configurations. A detailed analysis of this system was given
by Finley et al (1996), who adopted a wave operator perturbation approach and discussed
variants of the MP and EN choice of unperturbed Hamiltonian which can improve the rate of
convergence of the energy calculations when the A space involves the 1s2s2 and the 1s2p2

states. They also gave many references both to earlier work on Be and to alternative theoretical
approaches to deal with the intruder state problem. Sawatzki and Cederbaum (1986) showed
how varying the choice of the unperturbed Hamiltonian can avoid intruder state problems
and applied their methods to calculate the energies of five eigenstates of the H2 molecule by
perturbation theory. Choe et al (2001) used a two-state model to analyse the behaviour of
possible intruder states in their second-order calculations and then used appropriate shifts in
a redefined unperturbed Hamiltonian in order to remove the harmful effects of the intruders.
In principle atomic and molecular problems must necessarily involve a B space which is of
infinite dimension, which means that the matrix representation of the problem is truncating
the B space in some way, although with modern computers the B space can be made to contain
many thousands of basis functions. For second-order perturbation calculations of the ground
state energy of an atom or molecule it is possible to apply a well-known method from the early
history of quantum mechanics, the Hylleraas variational principle, which produces definite
lower bounds to the modulus of the second-order energy contribution as the trial function
for the first-order perturbed function is varied. It also leads to an estimate of the third-order
energy and permits the use of trial functions which can be more complicated than those
encompassed by a finite orbital basis, although these two features do not seem to have been
much exploited in molecular calculations. An informative paper which used both the Hylleraas
principle and the partitioning approach to the eigenvalue problem is that of Cave and Davidson
(1988a) and Certain and Hirschfelder (1970) described a generalized Hylleraas approach for
multidimensional reference spaces. Meath and Hirschfelder (1964) had much earlier applied
variational principles similar to the Hylleraas one in their study of BW perturbation theory.

An obvious candidate for the application of partitioning techniques is the Dirac theory
of the electron, since the common case in which the third and fourth components of the
relativistic wavefunction are small seems to call for an approach which represents their
effects by means of a modified Pauli theory involving only the two large components. Long
ago Blinder (1960a) used a partitioning approach to achieve this, in his theory of atomic
hyperfine interactions. More modern approaches to the Dirac equation which specifically
used wave operator methods were those of Rutkowski and Schwarz (1996), Rutkowski (1999)
and Kutzelnigg (1999). Kutzelnigg and Liu (2000) used quasidegenerate perturbation theory
and an effective Hamiltonian approach to incorporate relativistic effects in a multiconfiguration
self-consistent field calculation.

The coupled cluster approach represents the wave operator in the formalism of second
quantization and sets it equal to exp(f), where f is a sum of creation operators which generate
single, double and occasionally higher excitations from the one or more initial functions
taken as reference functions. Coester (1958) within nuclear theory and Cizek (1966) within
molecular theory are usually regarded as having established the basic concepts of the CC
theory and there have been many subsequent works on the theory and applications of it, e.g.
Monkhorst et al (1981), Kaldor and Haque (1986), Lindgren (1991), Meissner and Bartlett
(1991, 1995), Kowalski and Piecuch (2000a, 2000b). In the exp(f) wave operator of CC
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theory f includes a string of creation operators, each with an unknown coefficient which
remains to be determined during the calculation. This exponential form adds a further layer
of nonlinearity to that which would already be present by virtue of the nonlinear form of
the generalized Bloch equation (a similar but milder effect appears in traditional Van Vleck
theory). Meissner and Paldus (2000) commented that a CC structure can be incorporated
into the theory after performing a more direct treatment via the generalized Bloch equation.
Kowalski and Piecuch (2000a, 2000b) used a homotopy approach to find a large number of
solutions of the generalized Bloch equation, pointing out the even greater variety of solutions
which would arise in a CC formalism in which approximate solutions of the equations were
also allowed. Many books have been written on the application of perturbation and other
techniques in quantum chemistry. Two which the present authors have found particularly
informative are those of Szabo and Ostlund (1996), which set out the principles of Hartree–
Fock theory and included an outline of the diagrammatic approach to many-body perturbation
theory, including the linked cluster concept, and that of Nooijen (1992), which gave a detailed
exposition of the coupled cluster theory, of second quantization and of diagrammatic methods.
In a recent work Noga et al (2002) started from a coupled cluster approximate wavefunction
for a molecule and then improved it by using a perturbation approach based on the connected
moments perturbation theory introduced by Cioslowski (1987).

2.10. A comment on intermediate Hamiltonians

Although the test calculations of part 1 of this review do not include any which use the
intermediate Hamiltonian concept, it is still worthwhile to see how some of the basic
mathematics associated with the intermediate Hamiltonian can be expressed in terms of the
simple partitioned matrix approach which has been used throughout the present work. The
works of Malrieu et al (1985) and Evangelisti et al (1987) were the principal ones which
explained how the problems of intruder states and avoided crossings led to the introduction
of the intermediate Hamiltonian concept. The ideas involved are most easily understood for
the case of a matrix for which the matrix elements are all functions of one variable parameter
x. As x varies the diagonal elements might cross and the off-diagonal coupling between
different states will vary. If the A space used in a wave operator approach for one or two
of the lowest eigenstates is a fixed one which gives good results for small x values then as x
increases the varying diagonal spacings and couplings might make higher state contributions
dominate the lowest energy level eigenvectors. This would reveal itself by the presence of
large numerical elements in the reduced wave operator F and F would become difficult to
calculate by numerical methods and probably quite impossible to calculate by perturbation
methods. Such matrices with one variable parameter appear amongst the test matrices of this
review and the type of effect outlined above is discussed whenever it appears in the results of
the test calculations of section 4. After describing several chemical systems for which similar
problems arise, Malrieu et al (1985) introduced the concept of an intermediate Hamiltonian
which, while acting in an extended model space, is only required to describe accurately the
lowest few states in a main model space. The remaining states in the intermediate space
are only given an approximate description but serve to protect the main model states against
intruder state effects. If the partitioned matrix notation used so far in this review is extended
in an obvious way to allow for the main model space A, the intermediate space B and the
remaining large space C, then the two wave operators appearing in the method of Malrieu
et al are the W which has already appeared in earlier sections and an extra wave operator R.
The two operators have the following non-zero portions:

W(I (AA), F (BA), F (CA)) and R(I (AA), I (BB),G(CA),G(CB)). (2.44)
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Thus W is a standard wave operator for subspace A (with its F column split into two parts)
while R is somewhat like a wave operator for the model space A + B, except that it does not
need to obey the full appropriate nonlinear equation. In order to ensure that the accurate results
provided by W are preserved by the new operator R in the extended model space it is necessary
to impose the requirement that RW = W . Inspecting the possible matrix products of the W

and R matrices as displayed above shows that only the CA component gives a non-trivial
result, in the form of an equation which relates the portions of the reduced wave operator parts
of W and R:

G(CA) + G(CB)F(BA) = F(CA). (2.45)

This result shows that the constraint imposed on R is not very onerous; once G(CB) has been
chosen in some way then G(CA) follows if the A space matrix F is already known. The
simple choice G(CB) = 0 leads to the result G(CA) = F(CA).

The intermediate effective Hamiltonian in the extended model space A + B is formed by
the standard Bloch Hamiltonian rule, which can be written here in the condensed but obvious
form

HB(AB,AB) = H(AB,AB) + H(AB,C)G(C,AB) (2.46)

where, for example, H(AB,AB) is made up of four submatrices. The special choice
G(CB) = 0,G(CA) = F(CA) makes several of the terms in HB(AB,AB) zero and
produces the intermediate Hamiltonian with the non-zero portions

(AA){H(AA) + H(AC)F(CA)} (BB){H(BB)}
(2.47)

(AB){H(AB)} (BA){H(BA) + H(BC)F(CA)}
Since this simple result shows a marked asymmetry Malrieu et al (1985) proposed an approach
in which the standard form of the generalized Bloch equation HW = WHW is modified to
the form HR = WHR and they gave a perturbative algorithm which produces the series for
R if the series for W is known. They also gave an alternative approach in which the whole
of the intermediate Hamiltonian is calculated as a perturbation series under the assumption
that the unperturbed main model states all have the same energy; that is why test matrix 3,
which comes from their paper, has its first five diagonal elements equal. That matrix was
later used by Zaitsevskii and Dement’ev (1990) and by Chaudhuri and Freed (1997), who
stated (incorrectly) that the standard RS series for the case of a five-dimensional A space
and a fifteen-dimensional B space diverges. In the work of the other authors cited and in the
calculations of the present review the series for F and for HB were found to converge; Malrieu
et al simply claimed that their intermediate Hamiltonian approach gave a quicker convergence
but commented that the associated series should have the same radius of convergence as the
standard RS series.

Malrieu et al (1985) asserted that any solution R of the equation HR = WHR must
also obey the equation RW = W , whereas Zaitsevkii and Dement’ev commented that the
only appropriate solution to the equation HR = WHR is the very simple one set out above
(with G(CB) = 0). The calculations of Malrieu et al do in fact give the correct energies
for the main model space, which supports their assertion, and appendix 2 of their paper
gives what is intended to be a general proof of it. Inspection of their numerical examples
show that they both use matrices in which the A and B spaces have the same dimension,
so that several of the quantities appearing in the theory are invertible square matrices. The
present authors conjecture that the ‘theorem’ of Malrieu et al is valid only in cases for which
the A and B spaces have the same dimension. It might also be noted that in such cases
it would be possible to assign the values of the G(CA) elements in F(CA) and then find
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the values of the G(CB) elements by using the inverse of the square matrix F(BA). In
general the concept of an intermediate Hamiltonian which does some things exactly and
other things approximately is somewhat imprecise and various authors have devised ways
of calculating such operators which do not use the specific formalism employed by Malrieu
et al (1985). Zaitsevskii and Dement’ev (1990) used a BW iterative approach which gradually
constructed the main and model spaces without the need to choose fixed dimensions for
them at the start of the calculation. Malrieu et al (1994), Zaitsevskii and Malrieu (1997)
and Chaudhuri and Freed (1997) all proposed particular ways of defining and calculating
intermediate Hamiltonians and Landau et al (2000) described a coupled cluster version of the
intermediate Hamiltonian. Evangelisti et al (1991) took an alternative approach to handling
the intruder state problem by using a formalism in which the energies for the desired target
space states are found by solving a generalized eigenvalue problem in a model space which
contains some extra dimensions, while abandoning the notion of a one-to-one correspondence
between model and target space states. Datta et al (1996) and Meissner and Malinowski
(2000) used coupled cluster theory to define an intermediate Hamiltonian; Datta et al used
partitioned matrices to explain their approach. Meissner and Nooijen (1995) used similarity
transformations to treat both the standard Bloch Hamiltonian and intermediate Hamiltonians
and gave an approach to the intermediate Hamiltonian which they stated to be equivalent to
the use of the HR = WHR criterion of Malrieu et al (1985). In its study of the derivation
of the Bloch effective Hamiltonian their work had the interesting feature of first applying a
transformation to render zero the BA portion of the Hamiltonian matrix (as in the present
work) and then applying a subsequent similarity transformation to the transformed matrix to
render zero the AB portion without disturbing the zero nature of the BA portion.

3. A selection of useful techniques

The present section gives an explanation of several techniques, some of them gleaned
from the mathematical literature, which are useful in treating either the construction or the
diagonalization of the Bloch and other effective Hamiltonians in the A (or model) subspace.
The assumption made throughout is that the effective Hamiltonian matrix is of relatively
low dimension but, although often real, cannot be assumed to be symmetric. Several of the
techniques described are best suited to the perturbative regime (the most common one) in
which F has numerically small elements. The problem of solving the nonlinear equation for
the reduced Bloch wave operator is not dealt with in this section, since several ways of tackling
it are described in later sections.

3.1. Matrix diagonalization by the single cycle method

The SCM was introduced by Périé et al (1993) in connection with calculations using the wave
operator approach; this application is described in some of the test matrix calculations of
this review. The SCM was originally developed as an improvement of the recursive distorted
wave approach (RDWA) to the calculation of the wave operator but was later developed
(Killingbeck, unpublished) to become a full matrix diagonalization technique which has some
resemblance to the traditional Jacobi method and which has found several different applications
in the present work. The method uses the similarity transformation approach described in
section (2.4) and exploits the multiplicative properties of partitioned matrices. The idea is to
start with the matrix H and the unit matrix C = I and to transform them both together, so
that H becomes diagonal and C is transformed into the matrix of eigencolumns. The matrix H
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need not be symmetric, which makes the method effective for dealing with the Bloch effective
Hamiltonian HB. The schema

(HX = EX) → (U−1HU)(U−1X) = E(U−1X) (3.1)

shows how the calculation proceeds, but a little thought reveals that if the initial C matrix
is the unit matrix then the transformation U−1HU of the matrix H should be accompanied
by the transformation to the right by U of the C matrix in order to produce the matrix of
eigencolumns. Each of the transformations used is one for which the U matrix is a unit matrix
plus a single non-zero element F(J,K) for which the numerical value w is given by the
first-order wave operator perturbation formula

w = H(J,K)/[H(K,K) − H(J, J )]. (3.2)

The effect of the (J,K) similarity transformation can be summarized by listing the changes
to be made (in strictly the specified order) to the elements of H and C

For H and C add w times column J to column K

Then for H subtract w times row K from row J.

The most simple procedure is to perform the (J,K) transformations cyclically, covering
all the non-diagonal elements in turn, with as many complete cycles as are needed to render
the sum of the moduli of the off-diagonal elements of H less than some very small tolerance
value. It is clear that a problem arises if H(K,K) = H(J, J ). However, in numerical test
calculations it has been found effective to simply jump over such (J,K) elements and also to
adjust large w values by applying a damping formula

w → w/[1 + K|w|] (3.3)

where K is typically between 0 and 5 and ensures that the w value does indeed give a
‘small’ transformation. As the (J,K) indices are scanned cyclically, experience shows that a
collective effect takes place; elements which when undamped would give large or infinite w

values are gradually reduced by the actions of the other transformations and so tend to zero
with all the other elements. Perhaps the most dramatic example of this cooperative effect is
provided by the 50 × 50 matrix which is test matrix number 4 of the specimen numerical
calculations of this work. That matrix has all diagonal elements equal except the (1, 1)

element and yet the method succeeds in giving the full spectrum of the matrix, since the small
group of transformations which are initially possible gradually modifies the elements of H and
turns on the previously forbidden (J,K) transformations. In the exceptional case that all the
diagonal elements of the matrix are initially equal it has been found effective to perform one
initial scan using w values which are small random numbers. This separates the diagonals
sufficiently for the ordinary algorithm to become effective without changing the final results.
The method described here is similar to the standard Jacobi method, although it involves no
trigonometric functions or square roots. It shares with the Jacobi method the feature that the
final set of diagonal elements of H (i.e., the eigenvalues) need not be in a monotonic numerical
order. For small effective Hamiltonian matrices this is not troublesome, but in general it
is useful to add an extra step which suitably orders the eigenvalues and their associated
eigencolumns.

In the test matrix calculations reported in this work the SCM diagonalization approach
was the method of choice for finding the spectrum of the Bloch effective Hamiltonian. In
the matrix diagonalization calculation the aim is to render zero all the off-diagonal elements
of H, but the method can also be used to calculate the reduced Bloch wave operator by
choosing instead to make a chosen rectangular portion of the H matrix zero, in a direct
numerical application of the theory described in section 2.4. If the H matrix is complex,
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with complex eigenvalues, then a version of the method which uses complex arithmetic can
be applied and has been used for several calculations in wave operator and matrix theory.
However, since the method is essentially based on a perturbative formula, it should be
anticipated that the transformation sequence might not converge if the initial H matrix has
very large off-diagonal elements. This point needs further investigation, although the use
of a sufficiently large K value in the damping formula (3.3) has so far rendered the method
successful for most such cases. The role of the damping formula in this method appears to
be analogous to that of the inverse tangent function in the Jacobi method; in both methods
the effect is to limit the magnitude of the elements in each individual transformation of the
sequence.

Some trial calculations were carried out with a modified SCM (SCJM) which is very
close to the Jacobi method. The modification is best explained by displaying the set of four
elements with indices J and K which appear in the transforming matrix for the (J,K) step in
the two methods. These are

(SCM)

(
1 0
w 1

)
(SCJM)

(
u −w

w u

)
(3.4)

where u is the positive square root of 1 − w2 so that w and u in effect resemble the sine and
cosine appearing in the traditional Jacobi method. The inverse of the SCM form is found by
reversing the sign of w, while the inverse of the SCJM form is simply its transpose. The rules
for finding w were left unchanged in the test calculations with the SCMJ form, with K being
kept sufficiently large to ensure that the square root operation to find u is always permitted.
The SCJM approach works well, but was not adopted to replace the more simple SCM for
two principal reasons. First, since SCJM uses unitary transformations it is appropriate for
use with Hermitian or real symmetric matrices, while the SCM is more general and does not
require the initial matrix to be symmetric. Secondly, when the SCJM in the form described
above was applied to the calculation of an effective Hamiltonian (as described for the SCM
in section 4.3) the resulting effective Hamiltonian was indeed symmetric but was not in the
canonical HD form which appears throughout most of the literature of wave operator theory.
For both of the above reasons it was decided to stick to the simple SCM, which finds a variety
of applications in the test matrix calculations which are reported later. Hoffmann (1996) used
a transformation approach which was almost exactly the same as the Jacobi method in his
calculations of the wave operator but only went as far as finding the first-order wave operator
and the second-order effective Hamiltonian.

The matrices treated in the present work are all real. For a complex matrix it is easy
to set up the relevant formulae using complex arithmetic and the forerunner of the SCM,
the RDWA, has been used for various calculations on complex matrices (Jolicard and Billing
1990). One difficult corner of matrix eigenvalue calculations is that of finding the small number
of complex conjugate eigenvalues which can arise together with many real eigenvalues when a
real matrix is strongly asymmetric. The w values given by the SCM formulae will then all be
real and so apparently could not lead to any complex results. Several preliminary calculations
suggest that this problem can be overcome by using the complex form of the algorithm and
by using a first cycle in which the w values are given small random imaginary parts. On
later cycles most imaginary parts fall to zero, giving real eigenvalues, while a few of the
imaginary parts stay non-zero and generate the imaginary parts of the eigenvalues which are
complex. The limits of applicability of this simple procedure remain to be established by later
work.

In the present review the simple similarity transformations which form the basis of the
SCM are used for various calculations in wave operator theory but they have a long history
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in more general matrix theory. Strachey and Francis (1961) used them to transform a general
matrix first to lower Hessenberg form and then to tridiagonal form, showing that their method
was equivalent to the use of the Lanczos method with a particular choice of starting vector.
The rules which they gave to determine the numerical values of the elements (denoted by
w here) involved the ratio of off-diagonal elements and produced the desired transformation
in a definite number of steps. The simple perturbative choice for w used in wave operator
calculations can be used to render zero the appropriate off-diagonal elements (or in principle
to shape the matrix in any desired way) by adjusting the set of elements for which the SCM
cycles are performed. Several trial numerical experiments showed, however, that the special
method of Strachey and Francis is much more speedy and reliable, since the SCM relies on
a cooperative effect which is variable from case to case and which is strongly influenced
by the size of the off-diagonal elements. The SCM uses only one non-zero element at a
time (apart from the implicit unit matrix in the transformation) whereas the RDWA method
uses transformations with a full column of non-zero elements. In both cases the inverse
of the similarity transformation is very easy to find (involving only a sign change). Collar
(1948) used transformations in which every off-diagonal element is non-zero simultaneously,
with a value given by the first-order perturbative formula of the present work. However,
these transformations did not have a simple inverse and so the inverse needed to find the
transformed matrix had to be calculated separately. For this purpose the Schulz method
described in section 3.2 was often suitable, since 1 − S is a reasonable first estimate of the
inverse of 1 + S if the elements of S are small. This would certainly be the case if Collar’s
method were augmented by using the rules for limiting the size of w which are given by
equation (3.3).

3.2. Generalized inverses and square roots

The first principles definition of F can be written in the form(
X

Y

)
=

(
I

F

)
(X)

(3.5)

where (X) and (Y ) now represent a group of M eigencolumns for an A space of M dimensions,
rather than a single eigencolumn as in previous sections, and (X) contains only the A space
parts of the group of eigencolumns. Since the columns in (X) can be assumed to be linearly
independent the square matrix (X) will have an inverse. Extracting the B space component of
equation (3.5) then quickly leads to the result

F = (Y )(X)−1. (3.6)

This result permits the construction of the energy-independent Bloch reduced wave operator
F from the (X) and (Y ) which have been found by using (for example) a state-by-state
calculation with the energy-dependent effective Hamiltonian HL which uses a different F
for each state. Thus an F which obeys a nonlinear equation can be constructed by using a
sequence of single column Fs which are found without directly solving that equation but rather
by resorting to the use of the first principles definition of F. If equation (3.5) is multiplied from
the left by the partitioned row (I, F †) then it is easy to obtain another formal result, this time
for (X):

(X) = (I + F †F)−1(I, F †)
(

X

Y

)
. (3.7)

The composite matrix above produces (X) from the full eigencolumn and acts like an inverse
of the wave operator matrix appearing in (3.5), even though that rectangular matrix has no
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traditional inverse. It is one of the types of generalized inverse treated in the mathematical
literature (Penrose 1955, Ben-Israel 1965). Historically it has been most often used in
connection with least-squares fitting, where (X) is a matrix in which all the rows are of
the form (x1, x2, . . .) and the equation MX = Y gives an incompatible set of linear equations
which can only be solved in a least-squares sense. Multiplying Y by the generalized inverse
of M then gives the best fit set of x values. The class of problems being studied here, however,
falls into a different category, since for this case the matrix (X) can be assumed to be square
and non-singular.

The generalized inverse of a rectangular matrix M can be found iteratively from
the iterative process of Ben Israel, which can be described by the assignment statement
formula

Z := Z + Z(I − MZ) (3.8)

provided that the initial Z is a sufficiently small multiple of the Hermitian conjugate of M. The
process described by (3.8) is an extension to rectangular matrices of the standard process of
Schulz (1933) for square matrices. Peters and Wilkinson (1970) reviewed several non-iterative
methods for the calculation of generalized inverses, stressing that most of them were natural
extensions of standard methods for finding the inverse of a square matrix, just as the Ben-Israel
method is a generalization of the Schulz method. Higham (1997) discussed how to modify
the Schulz process in order to calculate the square root of a symmetric positive definite matrix
S. He gave several algorithms; the most useful one, for the case of a matrix S which is close to
the unit matrix, is an iterative one which requires no matrix inversions. Two matrices Y and Z
are used, with the initial values Y = S and Z = I . The iteration process is then described by
the assignment statement cycle (modified slightly by the present authors)

T := 3I − ZY : Y := YT/2 : Z := T Z/2. (3.9)

This process gives quadratic convergence of Y to the square root of S and of Z to the reciprocal
square root of S. This process will be of obvious value for the case when S is the matrix S(AA)

of effective Hamiltonian theory and it has been used in some of the test calculations of this
work.

If the operators which appear in equations (3.5) and (3.7) above (and which are in effect
inverses of one another) are denoted by K and L, respectively, then the approach of Hurtubise
and Freed (1993a, 1993b, 1994)) can be used. Those authors pointed out that a variety of
such mutually inverse pairs (K,L) can be defined, each such pair leading to a model space
effective Hamiltonian of the form LHK . Taking the K and L from the discussion above
and the H matrix in its partitioned form leads to a triple product LHK which gives, as the
reader can confirm, the variational form HBV of the Bloch Hamiltonian. However this HBV

appears on its own in a single (AA) form, since the particular way of writing equation (3.5) has
represented only the X part of the eigenfunction. If the more conventional full space column
is used, with a zero B space portion below the upper X, then the operators L and K become
just the operators T (F ) and T (−F) of section 2.4 and the triple product then leads to a full
matrix with the usual Bloch operator HB appearing as the (AA) component.

In accord with the notions of perturbation theory the cases in which F has small matrix
elements can be described as being perturbative cases, since the F elements can be found by
applying some form of perturbation theory to an initial F matrix which is set at zero. In non-
perturbative cases in which the F matrix has large matrix elements, the SPD matrix S will be far
from the unit matrix and so the iterative algorithm based on Higham’s work will not converge.
For these more general cases it has been found convenient to make yet another use of the SCM,
by diagonalizing S while retaining the square eigencolumn transformation matrix C. Since S
is SPD it follows that C will have orthogonal columns (as is indeed found computationally);
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each column can be exactly normalized to render C unitary, so that its inverse is found by
simply taking its transpose. The desired power of the diagonal form of S(1/2,−1/2,−1, . . .)

can then be calculated trivially as another diagonal matrix and the back-transform can be
calculated by reversing the original diagonalizing transformation. This procedure would thus
be effective both for calculating the square root needed in the convertion of HB into HD

and for calculating the inverse which is needed in order to produce the effective Hamiltonian
HBV . It has been found to be effective for all of the test matrices treated.

To distinguish the two square root algorithms described here the first one, based on
Higham’s work, will be referred to as algorithm 1 and the second one (which makes use of
the SCM approach) will be referred to as algorithm 2. As a consequence of some of the test
calculations reported in this review it was found that algorithm 1 can sometimes converge
to a legitimate square root R(+) which is not SPD even though S(AA) is SPD. It was as a
response to this behaviour that algorithm 2 was introduced as a checking algorithm. Several
works on matrix theory state the theorem: an SPD matrix has a unique SPD square root. The
correct interpretation of this slightly ambiguous statement is that amongst the square roots of
an SPD matrix there is exactly one which is SPD. This result is made clearer by the use of
algorithm 2 as described above, since a variety of plus or minus square roots can be chosen
along the diagonal at the diagonal matrix step, with the SPD case corresponding to the ‘all
positive’ choice.

3.3. Gaussian elimination and the folding transformation

The derivation of the energy-dependent effective Hamiltonian (method 1 of section 2.1)
involves a partitioned matrix Gaussian elimination process. This is sometimes called a folding
transformation, since it folds down a large matrix into a smaller one in the A subspace. This
approach is often useful in numerical work. For example, Williams and Weaire (1976) used it
in some pseudopotential calculations to fold down a 69 × 69 matrix to a 12 × 12 matrix, with
the 12 × 12 matrix being solved in a sequence of self-consistent calculations to locate the e
values for which some eigenvalue equals the input e parameter in the term [eI (BB)−H(BB)].
They did not use A and B subspaces of dimensions 12 and 57, respectively, but simply folded
down the matrix one row and column at a time. This involves using the form of the matrix
partitioning formulae which are appropriate for the case in which the B subspace has dimension
1. The resulting (N − 1) × (N − 1) matrix then has modified elements in which each current
element H(J,K) is overwritten with a new modified value which is given by the assignment
statement

H(J,K) := H(J,K) + H(J,N)H(N,K)/[E − H(N,N)]. (3.10)

There is no requirement for the matrix to be symmetric, although for a symmetric matrix or
a banded one the folding process can be simplified by noting that folding retains the original
symmetry and bandwidth. Williams and Weaire (1976) folded down from dimension 69 to
12. If folding is continued all the way down until a 1 × 1 matrix is left, then the last (1, 1)

element is the reciprocal of the (1, 1) element of the resolvent [H − EI ]−1 and so is zero if E
is an eigenvalue. More usefully, the product of all the diagonal elements H(N,N) which arise
during the process is equal to the determinant of the matrix of H − EI and so the E values
which make it zero are the eigenvalues of the original matrix which has been folded down to
1 × 1 size. In the case of a non-orthogonal basis (as for the Kato effective Hamiltonian HK)
it is probably best to form the matrix M = (H − ES), where S is the metric matrix and then
use the folding method to find the determinant. The appropriate folding formula is then

M(J,K) := M(J,K) − M(J,N)M(N,K)/M(N,N) (3.11)
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and the secant rule can be used to find a zero of the determinant from a sequence of determinant
evaluations. Equation (3.11), with M = H −EI , is identical in form to that for the variational
approximation to the scattering matrix as given by Yang and Miller (1989), except that the basis
functions used for the scattering problem relate to the appropriate incoming and open channels
and so the matrix will in general have complex elements. When equation (3.11) is used for
bound state calculations which require many non-orthogonal basis functions to describe them
(e.g., Rydberg states) then problems can arise because of the near linear dependence amongst
the basis functions. A formal indicator of such problems is the presence of very small
eigenvalues in the diagonalized form of the overlap matrix. Jungen and Kaufmann (1992)
discussed ways of handling this problem. Their work has the interesting feature that in one
section it has a perturbed eigencolumn which arises by treating as a perturbation the effective
potential term (due to the A−B coupling) which appears in the Löwdin effective Hamiltonian
HL of the present review.

Since the H matrix is destroyed by the folding operation, a copy of it is actually used
in the sequence of foldings with changing E values. This method of calculating matrix
eigenvalues has been used for many years (e.g., James and Coolidge (1933), Löwdin (1963),
Killingbeck (1991)). Once an eigenvalue has been found then the associated eigencolumn can
be found using inverse iteration, i.e. by solving the linear equation system (H − ES)X = Y

for a suitable Y column. In the present work the direct calculation of the eigenvalues
using the folding transformation approach has been used to check both the complete spectrum
of the full matrices in the examples as well as the eigenvalues of the effective Hamiltonian in
the A subspace, since the technique works for both symmetric and non-symmetric matrices.
Although the test matrices used in this review are small, it should be noted that the folding
method is widely applicable; for example it has been used for perturbed oscillator matrix
problems with as many as 20 000 basis states (Killingbeck, in preparation) by exploiting the
fact that for a banded matrix the folding operation can work out the required determinant by
means of a recursive process which only needs to generate a small number of the elements of
the matrix at each step. If a real matrix for which eigenvalues are sought is asymmetric to a
small extent, then only a small error is made by using the symmetrised version of the matrix.
This can be seen as follows. The matrix can be regarded as a symmetric matrix plus a small
skew symmetric perturbing matrix of order β. The eigenvalues are found by rendering zero
the determinant of H − EI . Changing the sign of the perturbing terms is equivalent to
taking the transpose of the matrix, which does not change the determinant and so leaves the
spectrum the same. It then follows that the perturbation series expansion of any nondegenerate
eigenvalue must involve only even powers of β. Taking the symmetrized version of the matrix
thus gives eigenvalues with a leading error term of order β2. If the elements of F are small,
then the symmetric component of HB is a reasonable approximation to HD, as was noted by
Kuo et al (1993). The folding method (essentially Gaussian elimination) is usually applied
in numerical work but the algebraic formalism of Mower (1980), which used nested sets of
resolvents, was essentially an algebraic version of the folding transformation approach which
eliminates one dimension at a time. Mower’s work also included the use of two operators which
are equivalent to the operators W and HL of the present review. When the folding method
is presented in algebraic form it naturally leads to expressions which resemble continued
fractions and Swain (1976) gave a detailed analysis of the link between Hilbert space and
continued fraction methods, with particular reference to RS perturbation theory.

3.4. The Wynn epsilon algorithm and perturbation theory

The Wynn epsilon algorithm (Wynn 1956) is a simple lozenge algorithm which is often
effective in extrapolating a sequence of partial sums of a perturbation series or a sequence of
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terms in an iterative process so as to estimate the sum of the series or the limit of the sequence,
even when the sequence of terms being analysed is not convergent. Weniger (1989) has given
a review of several of the more modern summation and extrapolation techniques, many of
which were developed at Lille (see, e.g. Brezinski (1980, 2002)). In the present work only the
original Wynn epsilon algorithm was used and it turned out to be quite effective in some of the
model matrix calculations. Killingbeck (1988a) gave a flexible form of the algorithm which
incorporates three different summation methods which have appeared in the mathematical
literature. The most simple approach is to set up two column (or row) arrays, A and B. The
array A is filled with zeros, while array B is filled with the sequence of terms (partial sums or
iterates) to be analysed. The arrays A and B are imagined to be set out in a staggered pattern
of the form

S(0)

0 ×
S(1) ×[1/1]

0 × ×
S(2) ×[2/1] ×[2/2]

0 × ×
S(3) ×[3/1]

0 ×
S(4)

A B A B A B

(3.12)

and the new elements of A and B, the crosses on the above diagram, are filled in by the lozenge
algorithm of the following diagram

W
N

S
E = W + (S − N)−1. (3.13)

The elements of the successive B columns are then improving estimates of the desired limiting
value. When the input elements S(J ) are the partial sums of a series the elements of the B
columns are the numerical values of Padé approximants to the sum of the series. In the layout
shown above S(J ) has been taken to be the sum of a perturbation series up to the term λJ and
the B elements have been given labels which indicate their appropriate interpretation as Padé
approximants. If at each stage the A column is multiplied by 0 or −1 instead of by 1 before
proceeding, then the results obtained relate to two other types of sequence transformation
which have appeared in the literature (Killingbeck 1988a).

For a sequence of matrices (for example a sequence of estimates of the Bloch reduced
wave operator F ) several different procedures are possible. The most simple procedure, which
has been followed in the test matrix calculations of this work, is to apply the above algorithm
(usually called the scalar algorithm) separately to the sequence of values of each individual
matrix element. An alternative is to note that the reciprocal which appears in the algorithm
could in principle be interpreted as an inverse if the elements in the A and B arrays were
taken to be matrices rather than numbers. The usual interpretation given to this inverse in
the literature is that it should be taken to be a (transposed) generalized matrix inverse of the
kind introduced in the preceding discussion. Although much work on this theme has appeared
in the mathematical literature, the applications to quantum mechanical problems are not yet
plentiful. The theory of the traditional scalar Padé approximants has, however, been extended
to cover quadratic Padé approximants, which have been applied to some quantum mechanical
problems, including some studies of avoided crossing problems in effective Hamiltonian
theory (Goodson 2000a, 2000b, Dunn et al 1996).
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The Wynn epsilon algorithm as described here has been applied in some of the test matrix
calculations of the present review but there are several aspects of it which would still merit
further exploration. For example, for a square matrix such as HB the generalized inverse is
simply the usual matrix inverse. For the simple case in which HB is of 2 × 2 type it would
not be difficult to set up a version of the Wynn algorithm in which the transposed matrix
inverse replaced the scalar inverse; this would then allow the performance of the algorithm
to be compared with that of one which (as in the present review) simply applies the scalar
algorithm to each of the individual elements of HB. Another comparison worth making is
that between what might be termed internal and external iterative methods with quadratic
rates of convergence. Authors such as Durand (1983) or Dietz et al (1993) have concentrated
on the internal approach,in which the actual iterative formulae used to calculate a numerical
quantity are modified so as to give quadratic convergence. By contrast the external approach
sticks to a simple first order iterative process but then treats the output sequence from the
iterative process by using the Wynn epsilon (or some other ) algorithm; this procedure usually
produces a quadratically convergent sequence from the initially linearly convergent sequence.
This external approach is in some respects more universal than the internal approach and it
would be interesting to make a comparison of the two methods for a suitable test problem. An
example of the use of the two types of approach is mentioned in the account of the BWGS
method of section 5.2. In an iterative approach to the calculation of the F matrix each column
can be regarded as a vector in its own right; Smith et al (1987) and Graves-Morris (1992)
described methods for the extrapolation of a vector sequence, although in the present review
the individual elements have been treated separately using the scalar algorithm. Rissanen
(1972) treated Padé approximants for sequences of rectangular matrices. Coleman (1976) and
Jamieson (1987) explored the mathematical relationships between Padé approximant methods
and several of the iteration-variation techniques of quantum mechanics. Jbilou and Sadok
(1995) treated the use of vector extrapolation methods for solving systems of linear equations
and gave many references to earlier works using vector extrapolation methods.

3.5. Real arithmetic for complex matrices

Although it is quite feasible to perform complex variable forms of the various calculations
associated with wave operator theory, some workers prefer to treat matrix problems involving
complex variables by performing a preliminary transformation to a real matrix problem which
can then be treated by some pre-existing software. Two such transformation approaches can be
summarized by a simple calculation which is somewhat in the spirit of the partitioned matrix
approach which has been used throughout the present work. If the complex variable matrix
eigenvalue problem for an N × N matrix is written in the form

(C + iD)(X + iY ) = (A + iB)(X + iY ) (3.14)

(where C and D are real matrices and X and Y are column elements) then taking the real
and imaginary components on both sides leads to a pair of equations which can then be
re-expressed as a 2N × 2N matrix equation:(

C −D

D C

) (
X

Y

)
=

(
A −B

B A

)(
X

Y

)
. (3.15)

If the original matrix is Hermitian then B must be zero and the operation gives an ordinary
real symmetric matrix eigenvalue problem with a dimension which is twice that of the original
matrix. The number of eigenvalues is conserved, however, since each eigenvalue of the larger
matrix is doubly degenerate; with each eigencolumn (X, Y ) is associated a partner (−Y,X).
If the original matrix is not Hermitian then the A and B terms in (3.15) can be taken over to the
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left to give a 2N ×2N matrix M(A,B) which has both A and B as parameters. The eigenvalue
equation then takes the form of the requirement that M(A,B) should have the eigenvalue zero.
Thus A and B have to be adjusted in some trial and error process which attempts to make the
determinant take the value zero. In many of the applications of this approach B is a small
number and so various types of iterative or perturbative techniques can be used to handle the
problem. This real matrix approach has been used for resonance state problems by Bylicki
(1991), who modified an original technique due to Moiseyev (1983).

3.6. The spectral representation of HB

One way to construct HB is to first find F as the product (Y )(X)−1 by using blocks of
eigencolumn elements which have been calculated, for example, by using a state-by-state
procedure involving the energy-dependent effective Hamiltonian HL, or by any other means
of finding accurate eigencolumns. HB and its transpose will have the same eigenvalues but
with different eigenvectors X(J ) and Z(J ), respectively, associated with a given eigenvalue
E(J ). A little algebra (Wilkinson 1965) shows that ZT (J )X(K) = 0 for E(J ) �= E(K). In
the most simple case all the E(J ) are different and when scaled to form a biorthogonal set
with the X(J ) the Z(J ) can be defined by the property

ZT (J )X(K) = δ(J,K) (3.16)

or, more informatively, by

Z(J ) =
∑
K

B(J,K)X(K) (3.17)

where B is the square matrix which is the inverse of the symmetric matrix with the elements
XT (J )X(K). The effective Hamiltonian HB can then be set out in the form of a spectral
decomposition

HB =
∑
J,K

X(J )E(J )B(J,K)XT (K) =
∑

J

X(J )E(J )ZT (J ). (3.18)

It can easily be checked that acting with either of the expressions shown above on X(J )

correctly produces E(J )X(J ). If the reduced wave operator is known then HB can be formed
by simply forming the sum H(AA) + H(AB)F(BA). If only HB and the full H matrix
are known, then many different F(BA) matrices would give the same HB, since adding
any solution of the equation H(AB)X(BA) = 0 to F(BA) leaves HB unchanged. Only if
H(AB) is square and nonsingular (as it is for some of the test matrices) can F(BA) be found
unambiguously from HB. The correct F(BA) must, of course, pass the more stringent test that
it obeys the correct nonlinear equation. Malrieu et al (1985) wrote a spectral decomposition
to involve the projections of the exact full space eigenvectors on the model space. This form
stresses the ‘correct’ direction of the A subspace eigenvectors but seems to the present authors
to be equivalent to the forms given above, since an appropriate rescaling of the biorthogonal
vectors will be involved.

3.7. Some other techniques

The few techniques which have been described above were chosen because they form the
basis of several of the methods used in the test calculations reported later and also fit into the
area of matrix algebra with which the majority of general readers will be familiar. Several
other interesting matrix techniques which are not used here have been applied in works on
wave operator methods. These include the superoperator notation, which has sometimes been
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used to describe operators which are themselves functions of other operators (Primas 1963,
Durand and Paidarova 1996) and the definition and use of an inner product 〈A|B〉 for a set of
finite matrices of given dimension. This inner product is usually defined to be the trace of the
matrix product A†B and it permits notions such as those of an orthonormal set and of Fourier
analysis to be extended to matrices. The tensor operators of angular momentum theory can
be regarded as being an orthonormal set when treated in this formalism (Killingbeck 1975)
and Nicolas and Durand (1980) used a slightly generalized matrix inner product definition in
their treatment of effective operators by a form of matrix Fourier analysis. Becker and Fulde
(1989), Polatsek and Becker (1997) and Hubsch et al (1999) descibed an approach which uses
cumulant theory. This approach uses a definition of the effective Hamiltonian which involves
a partition function in a formalism which is akin to that of statistical mechanics and which
is quite different from the simple projection operator formalisms which are traditionally used
(since it uses Liouville space rather than Hilbert space). The new method is claimed to give
automatic size consistency when applied to many-body systems; Polatsek and Becker (1997)
note that up to second order the effective Hamiltonian obtained is that of RS theory, with the
cumulant approach only giving different results at higher order.

4. Some selected test matrices

Several test matrices from the literature of wave operator theory have been collected together
to provide material for the trial calculations which are reported in the next few sections of this
review. This section describes these test matrices and gives some accurate eigenvalues for
them; it is hoped that this information will be useful to other workers who require simple test
problems while developing new wave operator techniques.

4.1. The test matrices

4.1.1. Matrix 1. A 4 × 4 matrix (Navratil and Geyer 1993, Navratil et al 1993). The matrix
is real symmetric and includes an adjustable parameter x. The upper part of the matrix has the
(1, 3) and (2, 4) elements zero, while the (1, 2), (1, 4) and (2, 4) elements all equal 5x. The
(3, 4) element is x and the diagonals (from 1 to 4) are 1, 1 + 25x, 3 − 5x and 9 − 5x. This
model matrix has been used in the literature to study level-crossing and intruder state problems
and to explore the way in which the degree of non-Hermiticity of the effective Hamiltonian
depends on the off-diagonal coupling. Most authors have used a two-dimensional A subspace
with this model problem but both one and two-dimensional model spaces are used in the
present work. For the case x = 0.08 which has been used by several authors the eigenvalues
are 0.899 093 636 4, 2.381 927 461 8, 3.296 800 662 4, 8.622 178 239 4. As the value of x
increases some avoided crossings occur; for example, at x = 1/15 the elements H(2, 2) and
H(3, 3) are equal, leading to an avoided crossing. For x < 1/15 the eigencolumn associated
with eigenvalue E(2) of the H matrix will have a dominant contribution from basis state 2,
while for x > 1/15 the contribution of basis state 3 will dominate.

4.1.2. Matrix 2. A 5 × 5 matrix (Leinaas and Kuo 1976). This small test matrix was originally
derived from a test matrix for the Lipkin model of nuclear theory but was rewritten to involve
a pseudo-angular momentum. Close inspection reveals some apparent discrepancies between
the published numerical results in the paper of Leinaas and Kuo and the stated Hamiltonian;
accordingly in the present work the Hamiltonian has been rewritten to take the following form
in terms of angular momentum operators

H = [Jz − WJ + 4W ] + (3/2)U [J+ + J−] + (V /2)[J+ − J−]2 (4.1)



Topical Review R147

where the matrix elements of the operators in the basis of states |J,M〉 are given by

Jz|J,M〉 = M|J,M〉 : J±|J,M〉 = [J (J + 1) ∓ M(M + 1)]1/2|J,M ± 1〉. (4.2)

When the Hamiltonian is presented in this way it is easy to construct the matrix by
matrix multiplication starting from the J± matrices. The three numerical parameters obey
W = −x; V = 0.3W ; U = −0.3W , where x is an adjustable positive parameter. The angular
momentum J is variable but the choice J = 2 gives a five-dimensional full space. Leinaas and
Kuo used a one-dimensional model space and J = 2. For the case x = 0.1 the energy levels
are −2.016 205 863 3, −1.304 759 159 0, −0.395 878 797 6, 0.708 815 390 5, 2.008 028 429 4
while for x = 0.4 they are −2.811 963 774 3, −1.764 154 685 2, −1.421 295 395 7,
−0.075 189 324 9, 2.072 603 180 1.

4.1.3. Matrix 3. A 20 × 20 matrix (Malrieu et al 1985). This symmetric matrix has its first
five diagonal elements equal to 1. For J values from 6 to 10 the diagonal (J, J ) element is
2 + (J − 6)/10, while for J = 11 to 20 it is J − 8. The off-diagonal elements (J − 1, J ) are
0.1 (for J = 2 to 5) and 0.5 (for J = 11 to 20). The elements (J − 5, J ) are 0.1 (for J = 6 to
10) and 0.5 (for J = 11 to 20). The elements (J − 10, J ) are 0.1 (for J = 11 to 20). Malrieu
et al used this model matrix in an exploration of the intermediate Hamiltonian concept; their
space A was of dimension 5 (and thus initially degenerate if the off-diagonal elements are
regarded as being a perturbation), while the intermediate space used was of dimension 10. The
lowest seven eigenvalues of the matrix are 0.818 185 353 5, 0.890 035 365 3, 0.990 939 434 3,
1.089 247 492 3, 1.162 869 161 8, 1.679 498 696 7, 1.975 762 742 5.

4.1.4. Matrix 4. A 50 × 50 matrix (Durand et al 1994). The matrix is symmetric and has a
(1, 1) element of zero, with all the other elements in row 1 equal to an adjustable parameter
λ. All the diagonal elements except (1, 1) are equal to 1. All the (J, J + 1) elements for
J > 1 are equal to a second adjustable parameter µ. The main interest of this matrix is that
it has an eigenvalue near to zero in the middle of a background spectrum with a wide range
of negative and positive eigenvalues. The matrix is intended to give a finite matrix simulation
of the coupling of a discrete bound state to a continuum. The main interest of Durand et al
was in finding the perturbed bound state energy (which remains close to zero) by using a wave
operator approach. For the particular choice of parameter values λ = 0.005 and µ = 0.6 this
eigenvalue is −0.000 561 527 8, as was indicated in a private communication by the original
authors, who had inadvertently included the wrong data in table 2 of their paper. The rest of
the spectrum is distributed over the region between the lowest level of −0.197 632 079 1 and
the highest level of 2.198 094 148 6.

4.1.5. Matrix 5. (Evangelisti et al 1987). This is the matrix eigenvalue equation which
arises in a matrix approach to the eigenvalue problem for the Mathieu differential equation. If
the traditional matrix indices 1, 2, . . . , are used then the matrix is symmetric and tridiagonal,
with the diagonal elements H(N,N) = 4(N + 1) + x/2 and the off-diagonal elements
H(1, 2) = x/8 and H(N,N + 1) = x/4 for N > 1. The value of the parameter x has
been chosen in the range 0 to 16 by various authors. To obtain eigenvalues for the Mathieu
differential equation it is necessary to increase the dimension of the matrix until the matrix
eigenvalues attain their limiting values to a given number of digits. For the x values 2
and 4 a matrix dimension of 20 is sufficient to reach the limit. The lowest two levels at
x = 2 are 0.878 234 455 1 and 5.100 900 595 6, while for x = 4 they are 1.544 861 395 9 and
6.371 300 982 7.
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4.1.6. Matrix 6. (Coope and Sabo 1977). This is a real symmetric matrix with off-diagonal
elements all equal to 1 and with the diagonal elements given by the formula H(N,N) = 2N−1.
The dimension of the matrix can be chosen at will. For the 30 × 30 case the lowest
five eigenvalues are 0.319 736 977 2, 2.368 439 641 1, 4.401 133 876 4, 6.427 419 225 8 and
8.450 274 100 4.

4.1.7. Matrix 7. A perturbed oscillator matrix. A real matrix of arbitrary size representing
the perturbed Hamiltonian −D2 + x2 + λx2 in a basis of eigenfunctions of the Hamiltonian
Ho = −D2 + β2x2. This perturbed oscillator problem has often been treated in the literature
of quantum mechanics. The matrix can be constructed by matrix multiplication (Killingbeck
et al 2000) starting from the basic matrix element 〈n|x|n + 1〉 = √

(n + 1)/2β and the fact
that the eigenvalues of Ho are equal to (2n + 1)β for n = 0, 1, 2, . . . Since both H and Ho

are of even parity, it is possible to set up two distinct matrix eigenvalue problems by using
either the even (n = 0, 2, 4, . . .) or the odd (n = 1, 3, 5, . . .) eigenfunctions of Ho as the
basis functions. By varying β it is possible to control the strength of the coupling between the
chosen A and B subspaces. Meissner and Steinborn (1997a) used such an oscillator matrix
in their calculations which applied a Bloch wave operator approach to quantum mechanical
problems.

4.2. A direct search method

One simple way to tackle a small system of nonlinear equations is to use a direct search
approach. For the problem of calculating the wave operator F the system of nonlinear
equations takes a simple form; the components of F must be chosen so that all the components
of the matrix

f (F ) = H(BA) + H(BB)F(BA) − F(BA)H(AA) − F(BA)H(AB)F(BA) (4.3)

are simultaneously zero. For the 4 × 4 test matrix 1 given above, with an A subspace of
dimension two, the task is to vary the 4 elements of F so as to render zero (or as small as
is computationally feasible) an object function which is the sum of the moduli (or the sum
of the squares) of the 4 elements of f (F ). Two search methods were tried; both of them
vary the elements of F over an interval −a to a to find the set of values which minimize
the object function, and then repeat this process with a smaller interval (usually 0.9a) and
so on until the object function becomes very small (around 10−12). The first search method
used a discrete set of values in the range −a to a, while the second used a random number
generator to give a random number distribution of values in that range. Once a solution for
F has been found the effective Hamiltonian matrix H(AA) + H(AB)F(BA) can be formed,
giving some eigenvalues. As anticipated, there are several different solutions to the nonlinear
equations for F. Each one of them is obtained by the search process if the initial trial F
chosen is within an appropriate capture region surrounding it. Some calculations were carried
out for the parameter value x = 0.08 which was used by Navratil and Geyer (1993) and
Navratil et al (1993). The eigenvalues of the full 4 × 4 matrix have already been given in
section 4.1. The results given here are severely truncated double precision ones. Taking states
1 and 2 to define the A submatrix led to the following typical results, in which the F matrix
elements are given in the order (3, 1), (3, 2), (4, 1), (4, 2). The input (0, 0, 0, 0) gives the
result (0.1583, 0.5446,−0.1548,−0.012 12) and the eigenvalues numbers 1 and 3. The input
(−1,−1,−1,−1) gives the result (−0.3000,−1.7488,−0.0486, 0.0191)and the eigenvalues
numbers 1 and 2. The input (−20, 5, 0, 0) gives (−19.9875, 3.9778, 0.2191,−0.0588)
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and the eigenvalues numbers 2 and 3. The input (0, 0.5, 20,−3) gives the result
(0.4335,−1, 9622, 19.4724,−5.6591) and the eigenvalues numbers 2 and 4.

These results illustrate the variety of solutions which can be obtained for F. Those solutions
which contain very large components (such as the last two given above) clearly refer to states
for which the associated eigencolumns have their dominant components in the B subspace.
Such states lead to strongly non-symmetric HB matrices; for example, the four solutions cited
above have the associated HB matrices (in order)(

0.978 0.395
0.463 3.218

) (
0.980 0.408
0.289 2.300

)(
1.088 0.377

−7.595 4.591

) (
8.705 −0.922
0.484 3.214

)
. (4.4)

This strong (indeed, violent) asymmetry is taken in physical applications as a warning that
the chosen model space is highly inappropriate to describe the target space states which it
is intended to obtain. Such ‘bad’ eigencolumns and their associated F matrices would not
be expected to be attainable by means of a perturbation approach which is based on the
A subspace basis vectors and treats the A − B coupling as relatively small. Nevertheless,
these ‘bad’ solutions are perfectly correct in a mathematical sense. The four widely different
solutions obtained above were given to demonstrate that even such non-perturbative results
can be obtained by a careful approach. However, it should be clearly noted that for a small
problem such as this 4 × 4 one there is a more easy way to proceed; the basis states can be
permuted to put any two functions in the positions 1 and 2. This simple procedure associates
different pairs of eigenvalues with subspace A and so produces F matrices which will have
small elements for each case.

The search method can also be applied to the present 4×4 problem with a one-dimensional
A subspace and an F matrix with the three elements (2, 1), (3, 1) and (4, 1), so that it should
produce one eigenvalue at a time from the associated solution for the F matrix. Using the
input (0, 0, 0) gives as a result of the search the F column (−0.1998, 0.0495,−0.0525) and
thus eigenvalue number 1. Since the eigencolumn is formed by simply augmenting the F
column with a first element equal to 1, it is possible to use the full space orthogonality of the
eigencolumns to force any later search to go to a different solution. This is done by making
the new objective function equal to the sum of the squares of the 3 components of F plus
a large multiple (typically 20) of the sum of the squares of the inner products of the trial
eigencolumn (i.e., the trial F augmented by a 1 in the first position) with all the previously
found eigencolumns. The objective function then has a maximum, rather than a minimum, at
the previous solutions and so the minimizing search is repelled from those solutions and finds
a different one. When this procedure was carried out for the 4 × 4 test problem it gave the
F solutions (3.437 94, −6.312 23, 0.016 883), (5.868 11, 3.354 05, −0.126 03) and (0.089 50,
0.257 89, 18.965 95), associated respectively with the eigenvalues numbers 2, 3 and 4. The
last three F columns obtained are clearly associated with eigencolumns mainly situated in the
B subspace and so are far removed from any solution which would be expected using some
perturbative method based on the A subspace. 0nly the first solution, based on (0, 0, 0), would
be expected in a perturbative approach, although for this small test matrix the problem could
be handled much more easily by simply permuting the basis functions to vary the content of
the A subspace.

The calculations reported above are intended to illustrate directly the point which was
made earlier, that the general wave operator formalism is so general that in principle it
applies equally to all the possible eigenvectors which have a non-zero component in the
selected A subspace. The direct search method was also modified to give a gradient form,
since the gradient matrix of the matrix f (H,F ) is not difficult to obtain and so can be
used in a Newton–Raphson type of calculation. However, it was found that these search
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methods are comparitively slow and thus only useful for very small test matrices, although (as
demonstrated here for test matrix 1) they are useful in demonstrating the range of solutions
obtainable for the Bloch reduced wave operator F. Although a simple random search method
was employed in some of the calculations reported here, it might be possible to devise more
efficient probabilistic methods. Genetic algorithms are becoming increasingly popular and
were used for the diagonalization of the Hamiltonian matrix by Nandy et al (2002); an
adaption of such a method might turn out to be useful for wave operator calculations of
larger dimension than those which could be treated by the simple search methods used in this
review.

4.3. The single cycle method (SCM)

The name of this technique was perhaps not particularly well chosen but was originally
intended (Périé et al 1993) to emphasise that it uses similarity transformations involving
one element at a time. Previous works had used the recursive distorted wave approximation
(RDWA) described by Jolicard and Grosjean (1985) and Jolicard and Humbert (1991) in
which the transformations used fix the elements of a complete column simultaneously by
using the first order wave operator formula. It was discovered that by treating the elements
one at a time the convergence properties of the method could be improved, since each single
element transformation changes the environment for the next one, leading to a cumulative
collective effect. The SCM makes use of the similarity transformation method for matrix
diagonalization which has been described in section 3.1. For the wave operator applications
the aim is to render zero just the BA portion of the Hamiltonian matrix, while simultaneously
finding the elements of the Bloch reduced wave operator matrix F. The formulae for the
amplitude w associated with the (J,K) transformation and the damping formula to be used
to limit w are just as already set out in section 3.1. The rules for modifying the H matrix
elements are also those of that section. However, in order to find the F matrix rather than the
matrix of eigencolumns the role played by the C matrix has to be modified. The square array
of columns C is replaced by a rectangular array F with indices appropriate to the reduced wave
operator array to be calculated. As the (J,K) transformations scan the rectangular (BA)

region the w value for a particular (J,K) element is simply added to the present value of
F(J,K), with the F array being initially set at zero. The origin of this rule will be apparent on
looking at the multiplication rule below equation (2.21), which shows that taking the product
of similarity transformations involves adding the F submatrices. If only the Bloch effective
Hamiltonian matrix is required, then it is not necessary to find F since after convergence the
(AA) submatrix which remains is precisely the Bloch HB and can be diagonalized by making
a further application of the similarity transformation method. Thus the SCM serves both to
construct and to diagonalize the Bloch HB; it also serves (via square root algorithm 2) in the
transformation of HB into HD.

Test matrix 3, the 20 × 20 matrix of Malrieu et al (1985), was employed as a first
illustrative example, with the A subspace being taken as that with the basis functions 1 to 5.
The task for the sequence of transformations is then to render zero the F matrix region, i.e.
the matrix elements H(J,K) with J from 6 to 20 and K from 1 to 5. This will decouple the
A and B subspaces and so leave a 5 × 5 effective Hamiltonian matrix which should give 5
of the eigenvalues. To check the rate of progress of the calculation it is convenient to make
the program output the sum of the moduli of all the elements in the F block after each cycle
through all the (J,K) single element transformations in that block. For the 20 × 20 test
matrix the process converges very quickly and leads to a transformed 5 × 5 matrix (the A

space effective Hamiltonian) which produces the eigenvalues numbers 1 to 5 as quoted in
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the test matrix data. If the A subspace is only one dimensional, so that the transformations
have to render zero the first column of the H matrix excluding the (1, 1) element, then the
process still converges even though the first 5 diagonal elements are initially equal, and yields
the lowest test matrix eigenvalue, with the sequence of transformations gradually changing
the diagonals to remove the initial degeneracy. The method also works for an A space of
dimension 4 but does not converge for an A space of dimensions 2 or 3, although it does
render the (BA) terms small (so that the resulting F could be used together with the operator
HBV ).

When the transformation method is applied to the 4 × 4 test matrix number 1 and the
(J,K) scan is set to render zero the elements H(J,K) with J = 3, 4 and K = 1, 2, it leads
to the eigenvalues numbers 1 and 3 in the spectrum for the 4 × 4 matrix. When the method
is applied to the 50 × 50 test matrix number 4 and the value of λ is held at 0.005 several
interesting features arise. With µ set equal to 0.6 and a 1×1A submatrix the process diverges,
whereas with µ = 0.4 it converges fairly quickly to give an eigenvalue of −0.000 689 54. If
the process is set to render zero all elements except the diagonals then it converges to give
the whole spectrum at µ = 0.6. The lowest eigenvalue is found to be −0.197 632 1 while the
perturbed eigenvalue near zero is calculated to be −0.000 561 53, agreeing with the revised
result of Durand et al (1994). For the test matrix 2 the method using a two-dimensional A

subspace correctly leads to the two lowest energies at both x = 0.1 and x = 0.4. For the test
matrix 6 of dimension 30 the use of an A subspace of dimension 5 with the transformation
method gives the lowest five eigenvalues.

The numerical test results indicated a characteristic feature of the SCM, namely that the
co-operative effect of the successive transformations which it uses is at a maximum when
all of the matrix elements are being used, as in a full matrix diagonalization. When only a
small selection of the elements is being used, as in the calculation of the F matrix, then the
performance of the SCM depends more strongly on the smallness of the off-diagonal matrix
elements. The SCM has the obvious limitation that, like transformation methods in general,
it needs to have the whole of the matrix present, although this is no problem for some small
scale tasks such as diagonalizing HB or finding the square roots needed for the passage from
HB to HD.

4.4. Constructing HD from HB and F

The SCM as described here produces both HB and F from a calculation in which the
elements in the F region are scanned. A subsequent calculation in which all off-diagonal A

space elements are scanned will give the the eigenvalues and eigencolumns for HB. Since
the SCM is essentially an improved version of a perturbative technique, it tends to give
the best convergence for states which have large A space eigenvector components and thus
have relatively small F components. For such cases it is possible to perform an auxiliary
calculation which produces the canonical effective Hamiltonian HD without first needing to
perform any kind of matrix spectral analysis. This is done by using square root algorithm 1,
which was described in section 3.2 and which produces both the +1/2 and −1/2 powers
R(+) and R(−) of the matrix S = [1 + F †F ] in a single process involving matrix products.
Formation of the triple product R(+)(HB)R(−) then gives HD.

The SCM program used to carry out the calculations which were reported in the previous
section was modified by the addition of a small subroutine to work out R(+) and R(−) and
then construct HD. The calculation was successful for all the calculations in which the SCM
converged to give F and HB. For example, for test matrix 1 at x = 0.08 and with an A space
of dimension 2, the HB and HD effective Hamiltonians were found to be
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HB =
(

0.978 048 70 0.395 150 32
0.463 310 29 3.217 845 60

)
(4.5)

HD =
(

0.979 328 16 0.431 209 11
0.431 209 11 3.216 566 14

)

(after truncation of the double precision results). A check using the SCM correctly gave the
same eigenvalues for both HB and HD. In a case for which a technique yields an F matrix
with large elements (i.e., a non-perturbative case) then the square root algorithm 2 can be used;
this proceeds via a spectral analysis of the matrix [1 + F †F ] and is used in some of the later
test calculations.

4.5. Iteration with the E-dependent effective Hamiltonian. HL with a one-dimensional
model space

Inspection of the mathematical theory of section 2.1 shows that one way to calculate the
eigenvalues of the full matrix would be to solve the linear equations

[eI (BB) − H(BB)]F(BA) = H(BA) (4.6)

for F(BA), using some trial value e and then find the eigenvalues of the effective Hamiltonian
matrix H(AA) + H(AB)F(BA), adjusting e until one of these eigenvalues equals e and thus
must be an eigenvalue of the full matrix. It is clear that the procedure is essentially a Brillouin–
Wigner type of iterative one, with the eigenvalues having to be found one at a time, although
a quick approximate set of eigenvalues for those eigencolumns which are predominantly in
the A subspace can be found by using some appropriate average value e. In an iterative
approach the obvious method would be to apply some rootfinding technique to vary e so as to
render zero the difference E(e)− e as a function of e. Several authors have struggled valiantly
to render the procedure as effective as possible, despite the unavoidable limitation of having
to deal with one eigenvalue at a time if high accuracy is required. Löwdin returned to the
problem many times, but several of the most useful aspects of his work for computational
purposes are set out in an early paper (Löwdin 1963). Two useful results of his work can
be summarized as follows: first, there is always at least one true eigenvalue between e and a
computed eigenvalue (in practice this leads to upper and lower bound results as e is varied);
and secondly, that applying a Newton–Raphson process to find a zero of E(e) − e leads to a
correction formula which can be expressed in terms of a Rayleigh quotient when the matrix is
symmetric or Hermitian. Since the second result was used directly in the construction of the
algorithm used in the test calculations of this work it is worthwhile to set it out briefly. The usual
Newton–Raphson formula, when applied to find a root of the equation f (x) = 0, gives the
next approximation in the form x − f (x)/g(x) with the function f and the derivative g being
worked out at the present estimate. Löwdin showed that for the matrix problem considered
here, where a zero of f (e) = E(e)−e is being sought and where the A subspace is taken to be
one dimensional, the Newton–Raphson formula leads to the result that the next estimate of e
is given by the Rayleigh quotient formed by using the H matrix and a column in which the first
element is 1 and the other elements are the current F elements obtained from the solution of
equation (4.6) above. In retrospect this result is not too surprising, since it has some affinity
with the traditional Rayleigh iteration procedure, which projects out an eigencolumn by acting
on an approximate eigencolumn with the operator [eI − H ]−1, adjusting e at each step to be
the Rayleigh quotient for the current refined approximate eigencolumn.

The majority of the original works of Löwdin applied to the case of a one-dimensional
A subspace. In the first calculations reported here the A subspace was taken to be one
dimensional, so that only one eigenvalue could be estimated at a time. The point of interest was
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to see how many of the eigenvalues could be found by varying the parameter e. Computational
experience showed that the effectiveness of the calculation was much enhanced by
the use of a device similar in spirit to that used to control the magnitude of the w parameter
in the single cycle method described previously. In a direct application of Löwdin’s formula
the next e value would be set equal to the Rayleigh quotient RQ(e) for the current approximate
eigencolumn. The expectation value is taken using the full H matrix and a full version of
the eigencolumn in which the first element is 1 and the other elements are the elements of the
current F column. With this approach it was found that over a wide range of input e values
the process converged to the same eigenvalue. To prevent this behaviour the new trial value
of e was not set equal to RQ(e) but was changed gradually, so that the spectrum was explored
slowly without jumping over some of the eigenvalues near which the function E(e) − e has
large magnitude. This damping process can be summarized by the sequence of assignment
statements

SH := RQ − e : SH := SH(1 + |SH/SHM|)−1 : e := e + SH (4.7)

where SHM is a maximum allowed shift which is set by the operator along with the initial trial
e value. With this extra feature the calculation was even able to locate eigenvalues which were
very close to eigenvalues of the much larger B space and which had only a relatively small A

space component. For a specially constructed perturbed oscillator problem, the 40×40 matrix
of the Hamiltonian −D2 +x2 +x4 set up in a basis of even parity eigenfunctions of −D2 + 8x2,
the method found the lowest five of the even parity eigenvalues fairly easily. Overall, the
method was able to find all of the cited eigenvalues for the test problems, except for the case
of problem 2, for which E(5) at x = 0.1 and x = 0.4 seemed to be unattainable directly, but
could be found using the diagonal sum rule.

It is worth pointing out that to solve the system of linear equations (4.6) for the F matrix
the Gaussian elimination process was used. Once again this illustrates the universal role
played by this traditional process at all levels of the theory, as pointed out in section 3.3. By
forming the product (Y )(X)−1 the eigencolumn blocks (X) and (Y ) which are found using
these one state at a time method calculations with HL can be used to construct the F matrix
appropriate to the energy-independent Bloch reduced wave operator for the set of calculated
states. This idea was tested on several of the results obtained for the test problems and did
give the correct F matrix. The use of a direct Gaussian elimination method to solve the system
of linear equations (4.6) makes the method of this section very effective for the test problems.

An alternative approach which is closer to the spirit of traditional Brillouin–Wigner
perturbation theory is to attempt to solve the equations by using an iterative method such
as the Gauss–Seidel method. If the calculations outlined above are carried out with basis
state 1 as the one-dimensional model space then the lowest eigenvalue can be found for all
the test matrices except matrix 4, for which the state associated with basis state 1 is in the
middle of the full matrix spectrum rather than at the bottom of it. The reason for the success
in calculating the lowest energy is that the matrix [H(BB) − e1(BB)] is positive definite,
since deletion of state 1 from the basis leads to a lowest eigenvalue for H(BB) which is
above the lowest eigenvalue of the full H matrix. This then means that the Gauss–Seidel
iteration process will converge. By repeating the above calculations for H(BB) on its own
it was easy to show directly that for the test matrices the lowest eigenvalue of H(BB) is just
below the second eigenvalue of the full H matrix, as would be expected from the fact that
a one-dimensional A space is being used, with higher eigenvalues necessarily being trapped
between the singularities in HL which appear at the eigenvalues of H(BB). Even so, it turned
out to be possible to obtain some of the excited state eigenvalues for the test matrices 1, 2, 3
and 5, despite the overlapping of the full spectrum with the H(BB) spectrum.
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The most simple way to carry out the HL calculation would be to use the iterative formula
E = F(E), where F(E) is simply the numerical value of HL(E) for the one-dimensional A

subspace; this would give a first order process for which the convergence theory was given in
the chapter by Löwdin (1966) and also in the paper by Hose and Taylor (1982). The basic
result is that the iterations converge if the full space normalised eigenvector is such that the
sum of the squares of its A space components is greater then 1/2. Most of the eigenvectors
for the test calculations reported here do not satisfy this onerous requirement. Löwdin’s 1966
paper gave a review of most of the basic theory scattered throughout Löwdin’s papers and
described the second-order iterative method (based on the Rayleigh quotient) which was used
in the test calculations, except that the present authors added a damping factor which rendered
the method more stable when finding eigenvectors with very small A space components.

4.6. HL with a multi-dimensional model space

When the test matrices were treated by using a multi-dimensional model space it was found that
the performance of HL(AA) plus Gauss–Seidel iteration was much improved, presumably in
part because the eigenvalues of H(BB) are pushed up to even higher energies. The procedure
adopted was kept as simple as possible, being essentially an extension of that used for the case
of a one-dimensional A space. The HL(AA) effective Hamiltonian was formed by solving
the appropriate M linear equations to give [H(BB) − eI (BB)]−1H(BA) by GS iteration
and then the resulting M × M matrix HL(AA, e) was diagonalized to give M approximate
eigenvalues and eigencolumns. A particular eigencolumn was then selected to carry out the
same iterative process as was used for the case of the one-dimensional A space. When that
particular eigencolumn and eigenvalue had been refined another one was treated. Thus a
one at a time procedure was used, but with the extra feature that at each stage the Rayleigh
quotients for the other approximate eigencolumns gave quite good estimates of their associated
eigenvalues. This comparatively simple method has a feature which makes it similar in spirit
to the use of the intermediate Hamiltonian in energy-independent wave operator theory. Since
the convergence of the Gauss–Seidel calculation of HL(AA) is ensured for any e less than
the lowest eigenvalue of H(BB) it follows that adding more ‘buffer states’ to distance the
lowest few states in space A from the spectrum of H(BB) will facilitate convergence of
the calculation of HL(AA). Even if the higher eigenvalues of HL(AA, e) are not exactly
obtainable by the one state at a time process (because the Gauss–Seidel process diverges for
those e values), the exact calculation of the lower eigenvalues will simultaneously produce
reasonable approximate eigenvalues for those higher states which are unattainable by the direct
procedure.

Since the operator HL is Hermitian for a fixed e value, a set of orthogonal A space
eigenvectors is produced during the location of each eigenvalue. On applying the technique to
the test matrices it was found that the use of a two-dimensional model space gave a set of two
correct eigenvalues for test matrices 1, 5 and 6 and for test matrix 2 at x = 0.1. At x = 0.4,
however, E(2) is not attainable directly but is well estimated during the calculation of E(1).
Changing to a three-dimensional A space leads to converged exact results for the lowest three
eigenvalues at x = 0.4.

For test matrix 3 the use of a five-dimensional model space with GS iteration gives the five
lowest eigenvalues. If the Gaussian elimination method is used to solve the linear equations in
the B subspace then, of course, no convergence problems arise at that stage of the calculation,
so that all the eigenvalues can be found equally well. If the effect of the B space states on the
A space spectrum is small then it is sometimes possible to use a rough approximation which
neglects the off-diagonal elements in H(BB). This renders the solution of the linear equations
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in the B space trivial for every trial E value. This method, called the BK method, has been
applied in some calculations on molecules. Nitzsche and Davidson (1978) and Davidson et al
(1981) described this approximation in the context of a matrix partitioning formalism.

4.7. Expectation value calculations

The present paper deals mainly with the use of effective Hamiltonians for the calculation of
energy levels but several authors have looked at the use of effective operators which can be
used within the model subspace in order to find the matrix elements of an arbitrary operator
between the exact full space eigenvectors. It is an obvious preliminary requirement that the
matrix elements of the operator must be known in the basis set being used to set up the
Hamiltonian matrix, and the results for the effective operators are often stated in the form of a
perturbation series which uses the matrix elements. For the special case of an operator G which
does not lift any of the degeneracies of the energy levels which are represented by the effective
Hamiltonian there is a simple numerical way to find the expectation value 〈G〉 for an eigenstate.
A small term gG is added to the Hamiltonian and the eigenvalue problem for H + gG is
solved after that for H. Each energy level will then have an energy shift equal to g times the
〈G〉 value for the associated eigencolumn. In this approach the g value must, of course, be
sufficiently small for first-order perturbation theory to be applicable. This application of the
Hellmann–Feynman theorem can be made to involve analytic derivatives in some techniques
of quantum mechanics (e.g., Killingbeck 1985, 1988b). For the present calculations it is of
interest to make use of a perturbing operator which is not given as a function of coordinates but
is quoted directly in terms of its matrix elements. The most simple perturbation is to add the
small number g to the matrix element H(1, 1) of the full matrix of H; working out 〈G〉 then
shows that the energy shift produced is g times the squared coefficient of the basis state 1 in
the full normalized eigencolumn which goes with the eigenvalue considered. This energy shift
approach avoids the specific forming and normalisation of the full space eigencolumn and was
used by Killingbeck et al (2000) in some matrix diagonalization calculations. Adding g to all
the diagonal elements of H which refer to the basis states in the A subspace will reveal the
degree to which any specific eigenstate overlaps with that subspace. For the simple Löwdin
method which sticks to basis state 1 throughout, as in the HL calculations described above,
adding g = 0.001 to H(1, 1) and then monitoring the subsequent change in the eigenvalue
quickly reveals that the use of the damping equations (4.7) has made it possible to find
some eigenvalues which are far outside the perturbative regime and have very small A space
components. For test matrix 3 the squared coefficient of the basis state 1 is found to vary from
0.0310 for the first eigenvalue to 0.0010 for the seventh eigenvalue.

An algebraic application of the principle behind this numerical use of energy shift ideas
makes it possible to give an alternative derivation of one of the formulae which appear in the
work of Löwdin (1963). The aim of the HL calculation is taken to be that of varying e so as
to render zero the function f (e) = E(e) − e, where E(e) is the calculated eigenvalue. The
gradient of f with respect to e at an e value which renders f (e) zero can be related to other
partial derivatives by means of the following formula, in which the symbol h can stand for any
particular element of the H matrix which is regarded as being varied:(

∂f

∂e

)
h

= −
(

∂f

∂h

)
e

/ (
∂e

∂h

)
f

. (4.8)

For the special choice h = H(1, 1) a glance at the expression for E(e), as given in
section 2.1 shows that df/de is equal to 1, since H(1, 1) itself is the (AA) term in the
effective Hamiltonian HL. The quantity de/dh means the rate of change of the calculated
eigenvalue with respect to the matrix element H(1, 1). As explained above this is the square
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of A(1) for the full space eigenvector. The conclusion of the calculation is that at an e value
which gives an eigenvalue, i.e. at a zero of f (e), the derivative df/de is equal to −1/A2(1),
where A(1) is the coefficient of basis state 1 in the full space normalized eigenvector. This
form of the result is very simple but differs from that given in much of the literature, since
many authors concentrate on finding dE/de rather than df/de. The result shows that levels
with a very small A space component are more difficult to find because the region around
them over which f varies is narrow and adjoins a region of low df/de which tends to throw
a Newton’s method rootfinder out of that region into the vicinity of a distant root. The results
of the trial calculations show that this problem can be reduced by using the damping formula
(4.7) which constrains the varying e value to scan slowly through the region in which f (e) is
varying rapidly. The fact that df/de and dE/de are negative at the zeros of f (e) can be used
to prove the straddling theorem, mentioned earlier, which states that there is always an exact
eigenvalue of the full Hamiltonian H between e and E(e).

The simple energy shift procedure used above obtains expectation values by applying a
small but finite perturbation to the system. This finite perturbation method goes back as least as
far as the work of Pople et al (1968) but is probably even older. The calculation of expectation
values in the coupled cluster formalism was discussed by Nooijen and Snijders (1993) and the
more general problem of finding effective operators which will give the off-diagonal matrix
elements of an arbitrary operator was discussed in the context of effective Hamiltonian theory
by Kassis (1977) and Navratil and Geyer (1993). Perhaps the most detailed combined analysis
of general effective operators and effective Hamiltonians was that of Hurtubise and Freed
(1993a, 1993b, 1994), which explained how the definition of an effective operator depends
on the convention which is used for the normalization of the eigenvectors in the full space
and the model space. This point was also emphasised in chapter 5 of the book on nuclear
theory by Towner (1977), in which the theory of effective operators was presented in the
context of a lengthy exposition of the Bloch-Horowitz derivation of the energy-dependent
effective Hamiltonian for a few nucleons outside a filled shell. A short paper by Duan
and Reid (2001) summarised some of the results of Hurtubise and Freed and started from
the effective Hamiltonian HL and a wave operator formalism to derive (partly in terms of
diagrams) an effective operator for the energy (actually HB) as well as effective operators
for other observables. The review paper by Ellis and Osnes (1977) gave a lengthy account of
the construction of effective operators in nuclear theory, using a combination of algebraic and
diagrammatic techniques. The short paper by Navratil et al (1993) gave a very clear account
of the theory of effective operators by making use of two successive matrix transformations;
the first one produces the Bloch effective Hamiltonian and the second one serves to simplify
the form of the effective operators which represent operators other than the energy.

4.8. Comments on the HL calculations

Although the calculations using HL would be regarded as within the BW tradition, they
show some typical features which appear more widely in wave operator and perturbation
theory calculations. For example, when the GS method is used with a given multidimensional
reference space it might only be possible to find some of the lowest eigenvalues exactly
but the best approximate values for the higher eigenvalues could be found, for example,
by diagonalizing the HL associated with the highest exactly calculable eigenvalue. The
sandwiching theorem would then give some extra information about bounds on these energies
and the use of the approximate F from the HL calculation could be used in a better calculation
with HBV , and so on; an endless variety of approaches using HL seems to be possible. The
phenomena involved are quite similar to those which arise in the intermediate Hamiltonian
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approach (cited earlier), although that approach is within the RS tradition. When HL is used
with an accurate method of solution of the linear equations (e.g., Gaussian elimination) then
most of the problems associated with intruder states disappear. It then becomes possible to
use a sequence of individual HL calculations, each with its own separate F column, in order
to construct an F matrix and an operator HB (and thence HD) for the group of states treated,
thus transferring from an energy-dependent to an energy-independent formalism. Although
the details have not yet been investigated by the authors, it is a plausible conjecture that a
similar approach might be able to produce some form of intermediate Hamiltonian in the
case for which only the more restricted GS method is used to solve the linear equations (see
section 2.10).

The HL calculation necessarily treats accurately one state at a time, even when working
in a multi-dimensional model space. This state-specific way of calculating has become
increasingly popular as a means of avoiding such problems as the intruder state problem
and (in molecular problems) too much complication in the definition of an unperturbed one
body Hamiltonian within the BW tradition. Eberhardt et al (1974) made some configuration
interaction calculations by a method which is the same as that used in section 4.5 except that
they took only the diagonal part of the large (BB) section of their matrix. State-specific BW
calculations were also used in the calculations of Wenzel and Steiner (1998), Masik et al
(1998) and Pittner et al (1999, 2001) and in the perturbation formalism of Chen et al (2002).
The calculation of Meath et al (1963), although presented in terms of the reaction operator, is
equivalent to an iterative BW calculation of the wave operator within a partitioning formalism
for a single state. In the RS tradition the number of works which have used a state-specific
approach either explicitly or implicitly is large (e.g Adamowicz et al (2000), Finley (1998a,
1998b), Duch and Diercksen (1992), Meissner and Paldus (2000)). BW approaches are more
simple than RS ones and so make it possible to carry out efficient calculations for a specific
system while reducing any problems which might arise from intruder states. However, the
BW form of perturbation theory has for long been out of favour in the literature of quantum
chemistry because, within the context of general theory, it has the formal feature of being size
inconsistent. There is a vast literature on this subject but three works which explained the
problem and showed how it can be partially solved in a wave operator approach were those
of Sheppard (1984), Heully et al (1996) and Hubac and Wilson (2000). The BW approach
was shown to be useful in the calculation of the intermediate Hamiltonian by Zaitsevski and
Dement’ev (1990) and its value for some atomic and molecular problems was demonstrated
by Hubac et al (2000), Quiney et al (2001) and Hubac and Wilson (2001).

4.9. Some iterative calculations for F

Many authors have proposed iterative methods for the calculation of the wave operator.
Some of the methods start from what is essentially a perturbative point of view, assuming that
the basis functions used are eigenfunctions of some unperturbed Hamiltonian. Nevertheless
the common starting point of the direct iterative methods is a nonlinear equation, which can
be that for the Bloch reduced wave operator (the F of this work) or that for the full wave operator,
either the generalized Bloch equation or an alternative form which involves a commutator. The
methods vary in the degree of complication with which they partition the terms in the nonlinear
equation for F into ‘left-hand side’ and ‘right-hand side’ terms for the iterative process; some
authors have even suggested that the partitioning should be varied as the iterative process
progresses. In the calculations of the present work a relatively simple method was applied to
the test matrices. In particular, the Bloch effective Hamiltonian was retained as an entity in the
iteration equations. For both iterative and perturbative calculations this approach was found
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to be computationally effective as well as giving direct access to HB during the calculations.
The equations used were those already derived in section 2.2 but with a slight change which
permitted the introduction of a relaxation parameter K. It should be noted that the following
equations are written in assignment form (new value on the left, old value on right):

HB(AA) := H(AA) + H(AB)F(BA)

Y (BA) := −H(BA) + F(AB)[HB(AA) − eI (AA)]
(4.9)

Z(BA) := [H(BB) − eI (BB)]−1Y (BA)

F(BA) := F(BA) + K[Z(BA) − F(BA)].

In the calculations the matrix Z(BA) was found by solving the appropriate system of linear
equations in the B space by using Gaussian elimination, although a GS iterative approach
would be possible for e values which are below the spectrum of the H(BB) submatrix. The
set of equations given above includes a variable parameter e. In terms of pure algebra the
equations for F and thus their solutions are unchanged whatever the value of e. However,
the convergence properties of the iterative process and the particular solution which is finally
obtained are found to be influenced by the choice of both e and of the relaxation parameter
K. The role of K in controlling the convergence to particular solutions is analogous to that of
the damping formulae which have been used in some of the other test calculations reported in
this work. The subroutine which was devised for the SCM calculations and which converts
HB into HD was attached to the program which was constructed to implement the iterative
procedure.

Square root algorithm 1 succeeded when the elements of F were small. In all the test
calculations the initial F matrix was set at zero. For the 4 × 4 test matrix 1 with an A subspace
of dimension 2 and with x = 0.08 the use of the e values 0, 3 and 20 gave converged results for
F and HB, although the value of K had to be given the small value of 0.2 to constrain the last
two iterations to converge. For the cases e = 3 and e = 20, F contains very large elements
and HB is far from symmetric. The eigenvalue pairs obtained from HB are [E(2), E(3)] at
e = 3 and [E(3), E(4)] at e = 20. For these cases the square root algorithm 1 failed and so
algorithm 2 had to be used to produce an HD from HB. For the choice e = 0 a K value of 1
gave rapid convergence of F and HB, with the associated eigenvalue pair [E(1), E(2)]. The
calculation of HD using square root algorithms 1 and 2 gave converged but different apparent
HD matrices:

HB =
(

0.98054 0.40762
0.28001 2.30048

)

HD1 =
(

0.9182 0.16729
0.16729 2.36282

)
HD2 =

(
0.9730 0.32331

0.32331 2.30772

)
.

(4.10)

HB,HD1 and HD2 were checked to give the same eigenvalues, particularly since HD1 has
the unexpected property that its off-diagonal element is not close to the average of those for
HB. A check of the intermediate results of the computation revealed that it is HD2 which is
the correct canonical form of HD, while HD1 is a non-standard form which is necessarily
related to it by a unitary transformation. For this case (in which F has one large matrix
element) square root algorithm 1 leads to a legitimate but non-SPD square root R(+). For
test matrix 2 at x = 0.4, with a model space of dimension 2 the choice e = −3,K = 1 led
to the levels E(1) and E(2) with small F elements, so that HD was directly obtained from
HB by using the simple iterative method 1 for R(+) and R(−). The choice e = 4,K = 0.1
led to the levels E(4) and E(5), with a highly asymmetric HB and large F elements, so
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that algorithm 1 for obtaining HD did not work. For the test matrix 3 with an A space
of dimension 3 the choice e = 0,K = 1 gave rapid convergence and produced the lowest
3 levels, with algorithm 1 giving HD from HB. For test matrix 4, with an A space of
dimension 1, the choice e = 0,K = 1 gave rapid convergence to the correct eigenvalue
which is stated in the test matrix data. For the 20 × 20 test matrix 3 with a model space of
dimension 2 and x = 4 the choice e = 0,K = 1 gave rapid convergence and produced the
lowest two levels, with algorithm 1 giving HD from HB. For test matrix 6 with an A space of
dimension 3 the choice e = 0,K = 1 gave rapid convergence and produced the lowest three
eigenvalues, with algorithm 1 again producing HD from HB. Similar success was obtained
by using A subspaces of varying dimension for the perturbed oscillator matrix, test matrix 7,
with β2 = 8.

The results for test problem 1 illustrate a point of more general interest. The iterative
process produced the lowest two eigenvalues at x = 0.08 but the SCM calculation gave
the levels E(1) and E(3), for which the eigenvectors have the largest A space components.
This distinction between methods which ‘follow the eigenvalues’ and those which ‘follow
the eigenvectors’ (particularly for problems involving avoided crossings) has frequently been
made in the literature. The method of Krenciglowa and Kuo (1974), which was originally
derived by a diagrammatic approach, gives the states with the largest model space overlap.
Suzuki and Lee (1980) gave two methods, one of which gives the states which are nearest
in energy to the unperturbed energy. Both of these methods were formulated for the case
of a degenerate unperturbed system. Anastasio et al (1974) showed how to improve the
convergence properties of the Krenciglowa–Kuo method and Suzuki et al (1994) extended
the Lee–Suzuki method to handle non-degenerate model spaces. Andreozzi (1996) gave new
algorithms which were equivalent to the KK and LS ones as well as some which could give the
levels in the neighbourhoodof any assigned energy. Bogner and Kuo (2001) described both the
KK and LS methods in terms of iterative algorithms and related them to the renormalization
group method. Both of these last two works used the nonlinear equation for F (section 2.2),
which they called the decoupling equation.

The appearance of avoided crossings as the parameter x varies is clear in the case of
test matrix 1 and can also appear as the internuclear distance R is varied in calculations on
simple diatomics such as H2 and H+

2 The effects associated with avoided crossings are part of
a wider category of phenomena which involve intruder states, i.e. states (usually collective
ones) which can unexpectedly descend into the model space energy region and spoil the
intended description of the low lying levels by means of a small previously selected model
space. In atomic theory a simple case of this is provided by the Be atom; the obvious near-
degeneracy of the ls22s2 and ls22p2 states with S = 0 suggests the use of a two-dimensional
model space but the presence of various intruder states involving higher ns type orbitals
complicates the calculation. Several other examples are given by Evangelisti et al (1987),
who apply the intermediate Hamiltonian method of Malrieu et al (1985) to deal with the
intruder state problem; in particular they refine the distinction (mentioned above) between
‘energy following’ and ‘state following’ types of wave operator by introducing ‘adiabatic’ and
‘diabatic’ wave operators. Three of the early works which explored the intruder state problem
by using a theoretical exposition combined with the use of some clear 2 × 2 and 3 × 3 matrix
examples were those of Schucan and Weidenmuller (1972, 1973) and of Schaefer (1974). In a
sequence of connected works Vincent and Pittel (1973), Pittel et al (1976) and Vincent (1976)
gave a detailed discussion of the methods of constructing an effective Hamiltonians by means
of perturbation theory in cases for which intruder state effects are important; Vincent’s paper
gave several ways of defining the Bloch wave operator in terms of the projection operators
on the model and target spaces. Hose (1986) gave a detailed analysis of the way in which
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intruder states affect the choice of model space as the internuclear distance in H2 is varied.
Finley et al (1995) used a model of four hydrogen atoms on a rectangular array to show
how the choice of the unperturbed Hamiltonian in a perturbation approach could be used to
diminish intruder state effects as the length of the rectangle is varied while its width remains
fixed. Two works which both used the same perturbed two-dimensional oscillator example to
illustrate their approach to avoided crossing phenomena were those of Fried and Ezra (1989)
and Dunn et al (1996). The second paper looked at the behaviour of Padé approximants of
both linear (i.e., traditional) and of quadratic type in describing energy levels near an avoided
crossing. The first paper took an alternative approach which is similar to that which makes
use of effective Hamiltonians; the authors noted, by using the example of a 2 × 2 matrix, that
the secular equation describing two close energy levels should have a convergent perturbation
expansion even if the formal RS series for the individual state energies are divergent because
of the avoided crossing. They thus concentrated on obtaining the expansion for the secular
equation and found reasonable results for the perturbed oscillator test problem. Cizek et al
(1996) used the concept of an effective characteristic polynomial in their study of anharmonic
oscillators.

In the test matrix calculations above the linear algebra was carried out in the B space,
since the matrix [H(BB)−eI (BB)] was placed on the left of the equations to be iterated. The
equations can be rewritten to put [HB(AA) − eI (AA)] on the left. This leads to an A space
calculation but appears to require a matrix inversion. However, this can be avoided by taking
the transpose of the resulting matrix equation and so obtaining another problem involving a
system of linear equations (In terms of general algebra, the matrix equation AX−XB = C can
be solved iteratively by writing it in the form AX = C + XB. If it is written in the alternative
form XB = AX − C then the calculation of the inverse of B can be sidestepped by taking
the transpose of the equation). At first sight it is tempting to choose the form of the equations
which involves linear algebra in the smaller A space but preliminary numerical experiments
indicate that this ‘easy’ alternative does not have such good convergence properties as the
B space method. However, for the case of test matrix 3 the use of a relaxation parameter
formalism similar to that for the B space approach did give the lowest five levels with an A

space of dimension 5, although several hundred iterations and a relaxation parameter of 1/2
were needed to produce convergence, with the e parameter set at 5 (which is greater than any
of the required A space eigenvalues). Clearly, further numerical experiments are required to
discover to what extent the A space version of the iterative method can compete with the B
space version.

5. Some numerical perturbation calculations

Much of the literature dealing with the theory of wave operator and effective Hamiltonian
methods is devoted to the derivation of the expressions for the low-order terms in the
perturbation expansion of the various quantities arising in the theory. The expressions are
written in terms of sums-over-states which involve matrix elements of the perturbing potential
as well as unperturbed energy differences. This approach has long been familiar within non-
degenerate Rayleigh–Schrödinger perturbation theory; for several simple problems in that
area modern methods such as hypervirial perturbation theory have made it possible to use
recurrence relations in a purely numerical approach which bypasses the more cumbersome
traditional sum-over-states algebra and permits the calculation of perturbed energies and
expectation values without any knowledge of the perturbed wavefunction (Killingbeck et al
2001). For matrix eigenvalue problems, however, it is necessary to use more traditional
numerical or algebraic perturbation theory expansions which involve sums over states and
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matrix elements between basis states. In the present review the emphasis is on numerical
perturbation calculations but it should be noted that Kleiner (1972) used a matrix partitioning
approach in an algebraic derivation of the RS energy perturbation series up to fourth order,
while Marcus (2001) gave the low-order RS perturbation theory for a non-symmetric matrix.
The terms of various orders in the matrix perturbation theory of Pakiari and Khalesifard (1997)
were presented in the form of matrix products which could be evaluated numerically and so
permitted a perturbation calculation for the H2 molecule.

5.1. Rayleigh–Schrodinger methods

In the present work the various quantities have been expanded in powers of a perturbation
parameter λ defined as follows. The unperturbed matrix is taken to be diagonal in both the
A and B subspaces and so the notation D(AA) and D(BB) is used for the portions of the
unperturbed matrix. The perturbing matrix consists of the remaining terms in the full matrix,
whether of AA,BB,AB or BA type. Thus the perturbation can have diagonal contributions.
This freedom to vary the diagonal perturbation terms is used in some of the reported test matrix
calculations. In the works which give algebraic expressions for low-order terms in effective
Hamiltonian theory it has often been used to convert a non-degenerate unperturbed Hamiltonian
into a degenerate one (with a necessary change in the perturbing terms) so as to exploit the
relatively more simple terms which occur in the perturbation series for the degenerate case.
In the work of this section the perturbing terms are multiplied by a perturbation parameter
λ; the value λ = 1 corresponds to the actual matrix problem and so the various perturbation
series arising are summed with λ = 1 in an attempt to find the perturbed F matrix and Bloch
effective Hamiltonian. The terms appearing in the Hamiltonian matrix are thus written as

H(AA) = D(AA) + λV (AA) H(AB) = λV (AB)

H(BA) = λV (BA) H(BB) = D(BB) + λV (BB)
(5.1)

and the F and HB matrices are written as perturbation series

F(BA) =
∑
M

λMF(BA; M) HB(AA) =
∑
M

λMHB(AA; M). (5.2)

The expansion for F(BA) starts at the first order term. The F matrix has to obey the nonlinear
equation

H(BB)F(BA) − F(BA)H(AA) = F(BA)H(AB)F(BA) − H(BA). (5.3)

The perturbation series can be formed by inserting the appropriate expressions from (5.1) and
(5.2) in this equation and grouping the terms according to ascending powers of λ. It is clear
from (5.3) that the nonlinear term gives a lowest-order contribution of order 3 and so plays no
role in the calculation of the first-order term of F. This first-order term arising from (5.3) is
quickly seen to be given by

[D(AA) − D(BB)]F(BA; 1) = V (BA) (5.4)

from which the F(BA; 1) matrix is obtained directly, since the matrices D(AA) and D(BB)

are diagonal. This first-order result has already been used to define the small step-by-step
transformations which are used in the single cycle method of section 4.3.

Inspection of the higher-order terms appearing in (5.3) will lead to recurrence relations
which link the terms of various orders and so will permit the construction of the series for F,
from which the series for HB can be constructed in an auxiliary calculation. This procedure
based on (5.3) is the most common one in the literature and was implemented in one of the
programs written to treat the test matrices of the present work. Another program was written
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to implement the slightly different perturbation method of Roussy (1973) which attaches a
perturbation parameter to the nonlinear term in (5.3). The numerical calculations revealed
that for the test matrices the need to form a matrix triple product (for the FHF term) slows
down the speed of the calculations considerably in the higher orders of perturbation theory. It
was found that a given order of perturbation theory could be reached more rapidly by using an
approach which introduces HB directly into the recurrence relations and so does not involve
any direct triple products. Using the facts that HB(AA) = H(AA) + H(AB)F(BA) and that
the zeroth and first-order terms of F and HB are known it is straightforward to obtain the
recurrence relation which produces the higher order terms:

[D(BB) − D(AA)]F(BA; M)

=
∑

J

F (BA; J )HB(AA; M − J ) − V (BB)F(BA; M − 1) (5.5)

HB(AA; M) = V (AB)F(BA; M − 1).

The approach based on these recurrence relations not only leads to faster calculations but also
produces the effective Hamiltonian HB along with F, so that either of them can be treated by
Padé approximants if desired. The compact matrix notation used here makes the presentation
of the equations more easy; in calculations the various elements of the matrix F(BA; M) are,
of course, obtained by taking the appropriate elements of the matrix products appearing in the
equations. The diagonal form of the unperturbed matrices D(AA) and D(BB) simplifies the
calculation and leads to the typical unperturbed energy differences if the results are expressed
as algebraic formulae rather than being used numerically. The values of F(BA) and HE(AA)

are formed by summing the terms in their perturbation series.
For the test matrix problems the RS perturbation approach described above is quite

effective. For the 20 ×20 test matrix 3 the F and HB series converge by order 25 and produce
a 5×5 effective Hamiltonian which gives very accurately the lowest five eigenvalues exactly as
found in the preceding calculations. For a 40×40 example of the matrix of −D2 + x2 + x4 in
a basis with β2 = 8 (which cuts down the AB coupling) the perturbation series converge well
by order 30 for the case of an A space of dimension 3 and give the lowest three eigenvalues
accurately.

The 4 × 4 example test matrix 1 gave interesting results. With x = 0.05 the perturbation
series converge to give an effective Hamiltonian with the eigenvalues 0.942 794 6 and
2.190 624 2, which are the lowest two eigenvalues. At x = 0.08, however, the perturbation
series diverge, although a Wynn–Padé analysis which applies the Wynn epsilon algorithm to
each element produces accurate values for the elements of F(BA) and HE(AA). Varying
the V (AA) term was also tried. The program was modified to include a variable parameter
K which modifies the unperturbed diagonal terms; for example the diagonal unperturbed
element D(J, J ) becomes D(J, J ) + KV (J, J ) while the perturbing term V (J, J ) is reduced
to (1 − K)V (J, J ) to render the total diagonal element of the perturbed matrix exactly
the same as before. This approach changes the diagonal elements which appear in the
perturbation recurrence relations. It was found that for the 4 × 4 test matrix 1 the choice
K = 2 is effective for x = 0.08. This choice changes the diagonal elements of D(AA)

and D(BB) but simply reverses the sign of the diagonal terms of the perturbation. With this
change the perturbation series converge, leading to an effective Hamiltonian with eigenvalues
0.899 093 6 and 3.296 800 7. These are the first and third eigenvalues at x = 0.08. The two
values of x used in the calculations reported above are on opposite sides of an avoided
crossing at x = 1/15. The wave operator perturbation calculation eigenvalue jumps
from the lower eigenvalue branch to the upper one as x is increased through the avoided
crossing.
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For the 50 × 50 test matrix 4 with λ = 0.005, the perturbation series converge at µ = 0.2
and at µ = 0.4 to give the correct energy for the perturbed state arising from the unperturbed
zero diagonal in the (1, 1) position. At µ = 0.6 the perturbation series diverge, although
a Wynn–Padé analysis gives a perturbed eigenvalue estimate of −0.000 57, which is not too
far from the accurate value of −0.000 561 528 which was given in the test matrix data of
section 4. For the 30 × 30 test matrix number 6 the use of A subspaces of dimension M with
M varying from 1 to 5 leads to a strongly divergent sequence of partial sums for the HB

matrix elements. However, the application of the Wynn algorithm to each individual element
gives well converged values for each element of HB and produces the M lowest eigenvalues
to all the digits quoted in the data for the test matrix 6. For test matrix 2 with an A space of
dimension 2 the perturbation calculation gives a converged HB matrix and the correct lowest
two eigenvalues at x = 0.1, while at x = 0.4 the sequence of HB elements diverges but
leads to the two lowest eigenvalues to 8 digit accuracy when the Wynn algorithm is used. For
the 20 × 20 Mathieu test matrix number 5 with an A space of dimension 2 the perturbation
calculation quickly gives a converged HB which yields the two eigenvalues cited in the test
matrix data at both x = 2 and x = 4.

It thus emerges that the perturbation method is successful for the test matrices, even
though it sometimes has to be augmented by the use of the Wynn algorithm when the raw
sequences of partial sums diverge. The HB matrix alone was treated by the Wynn algorithm
in the results cited here, since the HB array is usually much smaller than the F array. A few
test calculations showed that a divergent F array is equally well amenable to treatment by the
Wynn algorithm; such a treatment would, of course, be needed if the full wavefunction were
required for any auxiliary purpose.

Although the test calculations reported above were in the main carried out for standard
decompositions of the test matrix into perturbed and unperturbed parts, the formalism is
sufficiently flexible to allow the use of other decompositions; for example, one of the most
common formal devices used in general theory is to reduce all problems to those of degenerate
perturbation theory by adding an artificial extra perturbation which makes all the unperturbed
A space levels have the same energy. This way of handling the problem can easily be tested
numerically by adjusting the D and V terms in the matrix perturbation approach of the present
section. Dietz et al (1994) showed how appropriate choices of the unperturbed and perturbed
parts of the Hamiltonian can influence the rate of convergence of the perturbation series in RS
theory. They gave some examples for molecular calculations.

In atomic and molecular calculations the two traditional ways of choosing the unperturbed
Hamiltonian are the Møller–Plesset (MP) one and the Epstein–Nesbet (EN) one. The MP
approach uses a sum of one-particle operators (usually a sum of Hartree–Fock operators) as
the unperturbed Hamiltonian; this means that the residual perturbing potential has diagonal
matrix elements. The EN method by contrast uses the diagonal matrix elements of the total H
to define the unperturbed problem and thus the perturbation is defined to have zero diagonal
terms. Several authors have proposed choices of the single particle Hamiltonian which can
give better low-order perturbation results than those given by the EN or MP approaches. The
work of Surjan and Szabados (2000) is of particular interest within the context of the present
discussion, since they made essential use of several partitioning methods in their theory. Rosta
and Surjan (2002) showed how to construct efficient unperturbed Hamiltonians which include
two-body operators. The theory and calculations reported above refer to the common case of
an M dimensional A space with an orthonormal set of basis functions as the basis for the full
H matrix. Blinder (1960b) described a second-order perturbation theory for the case M = 1,
with the B space basis functions being orthogonal to the A space function but not to each other.
Besalu and Carbo-Dorca (1998) described a compact RS perturbation method for the matrix
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eigenvalue problem; in their formalism the unperturbed matrix need not be diagonal but if it
is not diagonal then it is necessary to find its eigencolumns in order to start the perturbation
calculation. The analogous approach in the method of this section would be to diagonalize
the full H(AA) initially, which would then require a recomputation of the matrix elements
between the A and B spaces; such a test calculation is reported below. This procedure was also
used in a perturbative calculation of configuration interaction wavefunctions by Fortune and
Rosenberg (1976), who gave algebraic sum over states expressions for the energy terms up to
fifth order. It was also used by Huron et al (1973). Their initial states, found by diagonalization
within a space of strongly interacting functions of determinantal type, were iteratively modified
by mixing in other states which were coupled to them in the first order of perturbation theory,
with an iterative sequence of diagonalization and perturbation being carried out to produce
accurate eigenfunctions for a few low-lying states. Huron et al showed that this approach
was particularly effective in finding excitation energies, provided that a particular barycentric
modification of the MP definition of the unperturbed Hamiltonian was used to carry out the
perturbation calculations; they also discussed various other modified forms of the MP and EN
procedures which had previously been proposed in the literature. Bendazzoli et al (1987) used
an iterative procedure involving diagonalization and perturbation, setting out their method
in a manner which is more directly in the tradition of matrix eigenvalue techniques. Segal
and Wetmore (1975) also used a matrix perturbation approach to configuration interaction
calculations, although their method was based on an iterative BW calculation of low order
rather than on an RS approach. Several works have looked at how the MP or EN methods
for partitioning the molecular Hamiltonian can be modified to give better convergence of the
associated energy perturbation series. Recent works in this spirit include those of Finley and
Freed (1995), Surjan et al (1998), Angeli et al (2000), Maniero et al (2002), Angeli and
Cimiraglia (2002) and Wind et al (2002). Goodson (2000) applied rational and algebraic Padé
approximants in order to obtain good estimates of the full configuration interaction results for
several molecules from low-order MP perturbation theory results.

The full configuration interaction result, of course, plays the role of the ‘exact’ one
in the context of matrix calculations with a large basis set (whatever the ‘true’ chemical
accuracy obtained). The question of practical interest is whether the use of wave operator
or perturbation techniques, allied with Padé or other extrapolation methods, will simplify the
treatment of low-energy states and so avoid the direct diagonalization of the very large matrices
involved.

The MP and EN perturbation approaches are two different ways of partitioning the
Hamiltonian matrix of an atom or molecule when calculating the correlation energy correction
due to the inter-electron repulsion, starting from a Hartree–Fock or similar approximate
wavefunction. Some of the modern developments in the theory, although not based on a
wave operator approach, nevertheless involve some useful general principles and so are briefly
sketched here. The case of a state which can be represented by a single Hartree–Fock
determinant is taken, to simplify the discussion. The determinant contains optimised orbitals
found by solving the Hartree–Fock equations. However, from a matrix diagonalization point
of view the orbitals have the property that the perturbing Hamiltonian (i.e., the residual inter-
electron repulsion) has zero matrix elements between the determinant and any single excitation
determinant obtained from it. This is the essence of Brillouin’s theorem but can be seen to
be simply a necessary criterion for the energy of the determinant to be stationary with respect
to a variation of the orbitals within it. However, the exact groundstate eigenfunction would
have no matrix elements with every function which is orthogonal to it; the single excitation
states are just a very simple subset of these orthogonal functions. Kutzelnigg and Mukherjee
(2000) adopted an approach which tries to extend this line of thought, by applying the criterion
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that the exact wavefunction (which cannot, of course, remain a single determinant) should
have no double (then triple, etc) excitation matrix elements. They had to use the second
quantization approach to handle the problem and produced a hierarchy of equations which
must be satisfied by the wavefunction. They showed that this approach via a generalization of
Brillouin’s theorem naturally led to the use of cumulants in the calculation of various energy
expectation values and led to a more direct understanding of how such cumulants arose in the
work of Mazziotti (1998), which studied reduced density matrices and in that of Valdemoro
et al (2001) on the contracted Schrödinger equation approach, which also led to
reduced density matrices by studying the contracted Schrödinger equation obtained by
integrating over the variables of (in the simple case) N − 2 electrons in an N electron
system.

Silverman (1983) pointed out that many of the common approaches to RS perturbation
theory use the intermediate normalization convention and so use an energy correction formula
which is linear, in the sense that the Nth order energy correction appears to depend on
the Nth order perturbed eigenvector, whereas a variational approach to the theory would
indicate that knowledge of the Nth order wavefunction should be able to give the energy up to
the (2N + 1)th order. He rearranged the RS matrix perturbation formalism to take advantage
of this fact. It should be noted, however, that a more direct way to proceed is to calculate
the expectation value of the Hamiltonian for the full perturbed wavefunction up to a given
order. In the topics covered by the present review the relationship between perturbation and
variational methods is exploited both in the calculations with the energy-dependent effective
Hamiltonian HL and in the distinction made between effective Hamiltonians such as HB

and HBV . The RS formalism used to carry out the test matrix calculations reported above
was, as explained, chosen as the most effective out of several which had been proposed in the
literature. A further variant of this chosen method was also tried, in which the SCM was used
to diagonalize H(AA) at the start. Thus H(AA) was rendered diagonal and the H(AB) and
H(BA) parts of the matrix had to be recomputed to allow for the change in the basis functions
in the A space. At first sight it might appear that this approach would lead to better results
but it turned out that for the reported test calculations this preliminary diagonalization had
little effect on the performance of the RS calculation; in particular it did not avoid the need to
use the Wynn epsilon algorithm in those cases for which it had been necessary in the original
calculations.

Although the test examples given in the present paper all involve numerical calculations
based on simple algorithms, it would in principle be possible to follow through the steps of
the algorithm to obtain algebraic expressions for the results at each step. This would lead
to the typical sum over states expressions which appear in many formal works on low-order
perturbation theory. Another way to obtain algebraic perturbation series is to perform an
expansion in powers of V of the roots of the secular determinant which arises from the
matrix eigenvalue problem for the operator Ho + V . This approach has a long history (e.g.,
Sasakawa 1964, Chan 1966) and has been applied more recently by Chen et al (2002) to obtain
perturbation series for the energy of a state in the context of the one-state-at-a-time approach
to multi-reference perturbation theory.

5.2. Brillouin–Wigner Gauss–Seidel methods

In a discussion of perturbation methods it should be noted that many of the relaxation methods
which have been used to find matrix eigenvalues are essentially modified versions of Brillouin–
Wigner (BW) perturbation theory for the special case of a one-dimensional model space.
Although such methods have a close resemblance to the iterative methods which use the
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energy-dependent effective Hamiltonian HL, it is still worth giving an outline of some
particular aspects of the relaxation methods. The usual approach in such calculations is
to set the coefficient A(I) of the Ith basis function in the desired eigenfunction equal to 1; this
corresponds to the intermediate normalization convention in perturbation theory. The initial E
value can be taken to be H(I, I) or can be chosen at will. Each other coefficient A(J ) is then
calculated by re-arranging the Jth row of the standard eigenvalue equation into a form which
expresses A(J ) in terms of the other A(K). In assignment statement form this gives

(J �= I) B(J ) := [E − H(J, J )]−1
∑
K �=J

H(J,K)A(K). (5.6)

In this equation the new value of A(J ) has not been used to overwrite the old value but has
been put into a separate B array. At the end of a full cycle through the J indices the B(J ) are
copied into the A(J ), which are then used in the next cycle over the J indices. The iterative
process used is thus what is called the Jacobi process, in which the old values of A(J ) are
held fixed while all of the new A(J ) values are worked out. At the end of the cycle number N
a running total F(E) is augmented as follows:

T (N) :=
∑

J

H(I, J )A(J ) : F(E) := F(E) + T (N). (5.7)

The initial value of F(E) before the first cycle is set as H(I, I). If the cycles are followed
through algebraically it can be seen that the running total F(E) is actually the numerical
value of the traditional sum of terms of increasing order which appears on the right of the
usual implicit equation E = F(E) for the eigenvalue of state number I in the traditional BW
perturbation theory. Similarly, the running total of the A(J ) values from each cycle gives
the J component of the eigenvector in BW theory. In a numerical calculation the important
point of interest is whether the sequence of F(E) values can produce a well-defined numerical
function of E as N increases. Even when the sequence of values of F(E) diverges it turns
out that the sequence can often be made to yield a very precise numerical result by applying
the epsilon algorithm. This particular effectiveness of the Padé approximant approach or of
equivalent continued fraction methods within BW perturbation theory has been noted and
exploited by many workers (Young et al 1957, Goscinski 1967, Brandas and Goscinski 1970,
Bartlett and Brandas 1972).

The discussion which has been given above of the relaxation approach has presented it
in the form of a BW matrix perturbation theory which is appropriate to the context of this
section of the review. However, this ‘pure’ form of the method has been used only rarely in
the literature: the majority of workers use Gauss–Seidel iterations rather than Jacobi ones and
also update the value of E on every cycle rather than trying to evaluate F(E) for a fixed E.
The resulting calculation is a hybrid one in which different orders of BW theory are mixed
together. This approach can be described by replacing the assignment statement (5.6) by the
pair of assignment statements

(I �= J ) T := [E − H(J, J )]−1
∑
K �=J

H(J,K)A(K)

(5.8)
A(J ) := A(J ) + RC[T − A(J )]

and the assignment statements (5.7) by the assignment statements

T :=
∑

J

H(I, J )A(J ) : E := E + RE[T − E] : T S := T S + T . (5.9)

The introduction of the relaxation parameters RC and RE helps to constrain the iterates to
the vicinity of a desired solution, whereas the standard method with RC = RE = 1 has a
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tendency to fall to the lowest eigenvalue unless the H matrix is diagonally dominant. If RE

is set equal to 0 and RC is set equal to 1 then E is held fixed and a sequence of T S values is
produced, leading (possibly after treatment by the Wynn algorithm) to a numerical function
which turns out to have the same numerical value as the function F(E) of the ‘pure’ BW
version of the calculation, even though the Gauss–Seidel iterations mix up successive orders
of the traditional BW perturbation theory. In the numerical calculations reported here the
method was applied to the full H matrix rather than to the HB matrix, with RC and RE being
initially set at 1 and then reduced if any convergence problems were encountered, particularly
for excited states. The sequence of values of E was itself subjected to the Wynn algorithm and
this proved to be very effective in speeding up convergenceor even in producing it in some case
in which the sequence does not converge. Finding the Rayleigh quotient for the approximate
eigencolumn at each step would also be another way to convert the linearly convergent iterative
process into a quadratically convergent one. In their multireference perturbation calculations
Cave and Davidson (1988b) used an iterative method which is virtually the same as the
BWGS one and devised another method to convert the linear convergence into quadratic
convergence. The paper by Castano et al (1985) presented a method very similar to BWGS,
except that it did not assume intermediate normalization but included extra steps to normalize
the perturbed eigencolumn. Rather than making direct numerical calculations Castano
et al traced through the iterations algebraically, producing sum over states expressions for
the energy and eigencolumn elements in a variety of perturbation expansions and then using
those expansions themselves in their numerical test calculations.

The BWGS method described above was applied to some of the test matrices, with the
simple (RC = RE = 1) method being tried first. For test matrix 1 with x = 0.08 and for
test matrix 2 with x = 0.1 the simple method gives all the eigenvalues as the index I is varied.
For test matrix 3 the eigenvalues 1, 5 and 6 are obtained directly by keeping the parameters
RC and RE sufficiently small to control the convergence and by varying I. For the cases of
eigenvalues 2, 3 and 7 the sequence of varying E values does not converge or even behave
well with the Wynn algorithm. However, setting RE = 0 and RC = 1 produces a sequence
of F(E) estimates which, although divergent, yields an accurate F(E) value when treated
by the Wynn algorithm. Varying E so as to make E = F(E) then gives a good eigenvalue
(although it involves a more tedious calculation!). For the case of test matrix 3 it is, of course,
important to avoid using the numerical value 1 as the initial eigenvalue estimate, since the first
five diagonal elements all equal 1 and so would lead to a division by zero. For test matrices 5
and 6 the direct method works. For test matrix 5 it gives eigenvalues 1 and 2 successfully and
for test matrix 6 it gives the eigenvalues 1 to 5. For test matrix 4, which involves a near-zero
eigenvalue in the midst of a spectrum, the best that the method appears capable of doing is to
give a rough estimate of around −0.000 56 for the eigenvalue.

It is clear that the difficult cases in the test calculations were mainly those for which
the exact eigencolumn did not have one single dominant component A(I) which could be
taken to be the component held at the value 1 during the calculation. Since the equations
which are used in the calculations do not exploit any symmetry properties of the matrix, the
relaxation method as described here would be applicable to matrices such as HB which are
not Hermitian but which have real eigenvalues. The linear equation (5.9) used to find the
eigenvalue is a generally valid one which appears in the intermediate normalization form of
perturbation theory, rather than one based on a Rayleigh quotient. Although most works using
the relaxation technique described above have treated the standard eigenvalue problem there
have been a few applications to the generalized eigenvalue problem. Arias de Saavedra and
Buendia (1990) used the method for a double well problem for which basis states in different
wells are not orthogonal. It seems probable that a similar application would be possible for
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the generalized eigenvalue problem associated with the Kato effective Hamiltonian HK for
those cases in which the F matrix has small elements, so that the matrix I + F †F is not far
from the unit matrix I.

5.3. Calculations of second order

In the test calculations of the present work an iterative calculation of second order was
used for the calculations involving HL, since the Hermiticity of the matrices involved made it
possible to exploit the properties of the Rayleigh quotient. For the other calculations, however,
first-order iterative processes were used, with relaxation parameters to control convergence
and with Padé approximant analysis either to control divergence or to produce second-order
convergence from the sequence of results produced by a first order iterative process. Durand
et al (1994) and Durand and Paidarova (1996) looked at a more general theory of second-
order iterative processes to calculate the wave operator, even for cases in which the matrices
concerned are not symmetric or even real. In the general case of a multi-dimensional model
space they needed a superoperator formalism to express their results and they also introduced
a partition of their operators into perturbed and unperturbed parts so as to produce iterative
methods within the specific RS and BW forms of perturbation theory. For the benefit of
general readers the present section sets out some of the basic notions of their approach while
sticking to the simple matrix eigenvalue problem in the form which has been used in the
preceding sections. The essential aim of this simple illustrative example is to use an A space
of only one dimension and to repeat the calculation of section 2.2 from another point of view.
If the column element A(I) is kept fixed with the value 1 then the matrix eigenvalue problem
can be written in the form

row I E = H(I, I) +
∑
J �=I

H (I, J )A(J ) (5.10)

(J �= I) H(J, J )A(J ) +
∑
K �=J

H(J,K)A(K) = EA(J ). (5.11)

Solving the second equation for E(J ) by moving the first term to the right of the equation
produces an expression for A(J ) which involves a division by (E − H(J, J )). If E is then
replaced by the right-hand side of the first equation then the result is an implicit equation for
the elements of the column A, which for this simple case can be seen to be the elements of the
reduced wave operator as defined in the preceding discussions. The equation is quickly found
to be

A(J ) = [D(J )]−1
∑
K �=J

H(J,K)A(K) (5.12)

with

D(J ) = H(I, I) − H(J, J ) +
∑
K �=I

H (I,K)A(K). (5.13)

This is a vector form of the common scalar problem of the type x = f (x) which arises
in ordinary algebra. To treat this scalar problem by means of a Newton–Raphson iterative
approach with second-order convergence it is convenient to regard it as simply requiring that
the functions F(x) = [x−f (x)] shall be zero. Applying the usual Newton–Raphson approach
to F(x) leads to a formula which can be expressed in several different ways. Perhaps the
most simple form is the incremental one which can be expressed in the assignment statement
form

x := x + [1 − G]−1[f (x) − x] (5.14)
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where G should be precisely df/dx to give an exact second-order Newton–Raphson process.
However, it is clear that a stationary state will be attained when x = f (x) even if g is only
a very rough approximation to the exact derivative of f . In the case of the vector equation
above for the vector A the role of the derivative of f is taken by the square matrix of partial
derivatives of the function f (J ) on the right of equation (5.12). Denoting by G(J,K) the
partial derivative of f (J ) with respect to A(K) the result obtained can be written in the
form

G(J,K) = [D(J )]−1[H(J,K) − H(I,K)f (J )]. (5.15)

In principle this would permit a Newton–Raphson process for the calculation of the
column A, with the G(J,K) matrix being worked out at each cycle, somewhat in the spirit of
the Jacobi iteration process. However this would involve a considerable amount of calculation
at each step because of the matrix [I − G]−1 appearing in equation (5.14). To render the
process computationally feasible it is necessary to seek for reasonable approximations to the
inverse, perhaps as a polynomial in G or as a fixed approximation worked out at an early
stage of the iterations. The result of such approximations is to lose the exact second-order
nature of the iterative process. Durand and co-workers, in the works cited above, tried
several approximations to the derivative operator in an attempt to obtain ‘nearly’ second-order
processes.

5.4. A deflation method

Several deflation techniques exist for removing a specified eigenvalue from the spectrum of
a matrix (Wilkinson 1965). In the test calculations of the present work the problem which
sometimes arises is that if a matrix is not diagonally dominant then an iterative method such as
the BWGS one might only be able to give the lowest eigenvalue with any speed or reliability.
In such cases the most appropriate way to find several low eigenvalues is to remove each
lowest eigenvalue as it is found, thus exposing a new lowest eigenvalue to be calculated. For
an Hermitian matrix with initial elements H(J,K) this can be done by adding to H(J,K)

a sum of terms of form e(N)Y (J,N)Y T (K,N), one for each lowest eigenvalue which has
already been found. Here the Y elements are those of the normalized eigencolumn and e(N)

is the artificial eigenvalue which has been assigned to move the Nth eigenvalue upwards to a
position far above the original true eigenvalue. In Dirac notation the term E(N)|N〉〈N | in the
spectral decomposition of H has been changed by replacing the true eigenvalue E(N) by the
new number e(N). In actual calculations the H matrix is left unchanged and the appropriate
extra terms are constructed during the formation of products such as H(J,K)X(K). Thus
only the elements Y (J ) are stored rather than the square matrix which they would produce.
If the matrix H is sparse or banded this type of deflation slows down the calculations since it
formally renders the matrix full, even though the modification only appears during the actual
formation of matrix products (and in the term H(J, J ) in the [E − H(J, J )] denominators).
However, the test matrices 3 and 6 are themselves full matrices and so the penalty incurred
is not so great. To render test problem 6 impossible for the simple BWGS approach the
off-diagonal element was increased from 1 to 5. Finding the lowest eigenvalues one at a time
by the direct relaxation approach with RC = RE = 1 and moving each calculated eigenvalue
up to e = 50 then produced the eigenvalue sequence −3.580 289 372 3,−1.502 808 228 3,
0.550 591 494 5, 2.593 891 278 1, 4.631 565 266 0 and so on. For test matrix 3 this deflation
method easily gives sequentially the lowest seven eigenstates. Convergence to the new lowest
state rather than to another state was found to be best ensured by setting the I index for
which A(I) = 1 equal to the sequence of values 1, 2, 3 as the calculation progressed.
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If the matrix being treated is real, with real eigenvalues, but is not symmetric, then the
term e(N)Y (J,N)Y T (K,N) used in the deflation process would have to be replaced by
e(N)Y (J,N)ZT (J,N), where the set Y and Z together give a biorthogonal set of functions.
Rather than finding the set of Z in terms of the Y by some collective calculation it is possible
to find the Z as the (suitably scaled) right eigenvectors of the transpose of the matrix for which
the Y are the right eigenvectors.

The deflation method described here is just one of the many ways in which it is possible
to exploit the reliability of the BWGS for the lowest eigenstate. Another possibility would
be to treat individually each one of the M states with the smallest M diagonal elements, using
the relaxation method with the other M − 1 states omitted. Each calculation would become
that for the lowest level of a truncated matrix and would lead to a function which included the
coupling to the higher states. The resulting set of M orthogonal functions could then be used
as a basis in the M-dimensional subspace, producing an M × M eigenvalue problem which
gives upper bounds to the lowest M levels. To obtain M levels of high accuracy would be
likely to need a subspace of more than M of the ‘enriched’ basis functions produced by this
procedure, although for a small subspace the solution of a generalized eigenvalue problem
rather than an ordinary eigenvalue problem would not cause any difficulty.

5.5. An adjustable BW calculation

The energy-dependent effective Hamiltonian

HL(AA) = H(AA) + H(AB)[eI (BB) − H(BB)]−1H(BA) (5.16)

can be formally expanded as a series in the perturbation V if it is supposed that H = Ho + V

for some unperturbed Hamiltonian Ho. In the present discussion using matrix models it will be
assumed (as in the previous RS calculations) that Ho is composed solely of diagonal elements,
so that for brevity its A and B space portions can be labelled D(AA) and D(BB). The
perturbation V is then taken to be all the rest of the matrix and is allowed to have diagonal as
well as off-diagonal elements. With the notation H(BB) = D(BB) + V (BB) it is clear that
the action of the operator [e − H(BB)]−1 on H(BA) (which is also V (BA)) can be written
in terms of an operator geometric series. If the notation R(e) is used to denote the diagonal
matrix [e − D(B)]−1 then the first term of [e − H(BB)]−1H(BA) is R(e)H(BA) and each
later term is calculated by multiplying the previous one by R(e)V (BB). These terms are just
those in the expansion of the energy-dependent reduced wave operator F(BA). As the Nth
term is found (by matrix multiplication from the preceding one) the product of that term with
H(AB) is formed and the total so far is stored in an array labelled so that T (N, J,K) holds the
total so far of the contributions to the element (J,K) of HL(AA) for the given e value. The
sequences will often diverge but the use of the Wynn algorithm can be effective in producing
a well-defined HL from the sequence.

Since the BW approach requires a state by state self-consistent approach even for a multi-
dimensional model space, it is necessary that the calculation, if necessary with the aid of the
Wynn algorithm, should give an accurate HL(e) for a wide range of e values. The method
allows the choice of Ho and V to be varied at will in order to improve the accuracy or rate
of convergence of the numerical results. In principle, when the B space has finite dimension
the use of the Wynn algorithm should produce an exact HL(e) in a finite number of steps, if
exact arithmetic is used. In actual single or double precision calculations, however, varying
the choice of the V part of the matrix has a visible effect on the accuracy obtained when the B
space is of large dimension. The most simple way to proceed is to use the off-diagonal part of
the H matrix as the perturbation V . For the small test matrices 1, 2 and 5 this method with an
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A space of dimension 2 gives highly accurate EL(e) elements. For the test matrices 3 and 6,
however, several digits of accuracy are lost and the results are much worse than those which
are obtained using the RS perturbation theory.

The next most simple stage of complication is to adjust the choice of V so as to render
the unperturbed A or B space Hamiltonians degenerate. Several calculations were tried for
some of the test matrices with the B space unperturbed diagonals all being set equal to a
fixed number E(B) and with the diagonal part of V being adjusted to leave the full H matrix
invariant. Perhaps the most extreme choice is to use an A space of one dimension and to take
the unperturbed matrix to be simply a null matrix except for the element H(AA), so that the
Brillouin–Wigner energy series has powers of E in its denominators and moments of the full
Hamiltonian matrix in its denominators. This choice was made in the work of Brandas and
Bartlett (1971) and Bartlett and Brandas (1972, 1973) and was studied by Surjan and Szabados
(2002a, 2002b). It leads to a strongly divergent sequence for HL(e) but the action of the Wynn
algorithm then produces numerical results which are reasonably accurate for the test matrices
1, 2 and 5. If the B matrix is strongly diagonally dominant then another rough approximation
would be to ignore the off-diagonal elements of B, which for the present calculation would
remove the terms beyond second order in the perturbation. This approximation has been
used in some calculations on molecules and is called the BK approximation. It has been
explained in terms of partitioned matrix theory by Nitzsche and Davidson (1978). In some of
the traditional discussions of the convergence of the BW perturbation theory a clear distinction
has not always been made between the convergence of the partial sums for the function F(e)

at a fixed e and the convergence of the sequence of eigenvalues E(N) which are found by the
more complicated process of solving the equation E = F(E) iteratively using the Nth order
sum for F(e). Bhattacharyya (1982) gave a careful study of the different quantities appearing
in BW theory and of their treatment in the previous literature.

While the vast majority of matrix perturbation calculations use a diagonal matrix as
the unperturbed matrix, thus making the calculation of the inverse easy, some workers have
explored the possibility of using an unperturbed matrix of a tridiagonal or even more general
form. Znojil (1987) and Bishop et al (1989) discussed this more general theory. The direct use
of the partial sums of the perturbation series for energies or wavefunctions naturally leads to a
study of convergence properties, summation techniques, etc. An alternative approach, which
goes back as least as far as the work of Dalgarno and Stewart (1961) is to regard the perturbed
wavefunctions of successive orders as functions which have been correctly ‘shaped’ by the
perturbation and thus should make suitable non-orthogonal basis functions to be used in a
Rayleigh–Ritz calculation. This approach was applied by Allen (1983) and a similar idea was
also used in one of the techniques discussed by Certain and Hirschfelder (1970). Cederbaum
and Schonhammer (1975) described a highly flexible way of using perturbed wavefunctions
in a matrix variational calculation and discussed the relationship of their approach to that of
previous workers within the context of BW and RS perturbation theory and continued fraction
methods. The method of forming an ‘enriched’ basis which is mentioned at the end of the
BWGS section of the present review is based on the same approach of using information
from a perturbation calculation to improve the performance of a matrix generalized eigenvalue
calculation. The early work of Lennard-Jones (1931) had the interesting feature (from the
point of view adopted in this review) that it derived what is essentially BW perturbation theory
from a study of a partitioning of the Hamiltonian matrix. Later workers such as Feenberg
(1948, 1958), Feshbach (1948), Goldhammer and Feenberg (1956) and Barr (1971) sought
to improve the results obtainable at a given order of BW perturbation theory by including
extra adjustable parameters in the theory. Leinaas and Kuo (1978) studied the convergence
properties of BW theory by using an operator which is the HL effective Hamiltonian of the
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present work. Lain and Torre (1987) gave an elementary way of unifying the derivations of RS
and BW perturbation series. Works which have given efficient approaches to the BW series
within the context of applications to atomic or molecular problems include those of Grimaldi
(1969) and Lindgren (1984).

Several authors have chosen the unperturbed Hamiltonian matrix to be PHP + QHQ
(in the notation of this review), with PHQ + QHP as the perturbation. This approach was
described by Adams (1966) and is sometimes called Löwdin–Adams perturbation theory. It
can be shown that obtaining the first-order perturbed wavefunction suffices to find the energy
up to fifth order, with all odd-order perturbed energies being zero. If the A space is taken to
be a single approximate eigenfunction of the Hamiltonian then in principle the B space can
be regarded as the rest of Hilbert space. The first-order perturbed wavefunction cannot be
found exactly but can be found with high accuracy by using a variational principle with trial
functions which are suitably chosen to allow for correlation effects. The method has been
applied to two-electron atoms by Devine and Stewart (1972), using a Hartree–Fock function
as the A space function, and by Chong et al (1973), using a split-shell function as the A space
function. Both choices sufficed to obtain the He atom groundstate energy to within 0.0001
atomic units using just the variationally determined first-order perturbed wavefunction.

6. Conclusion

Part 1 of this review has given an historical survey of the use of the time-independent wave
operator concept in several branches of applied quantum mechanics and has presented the
basic theory in the context of matrix algebra, both to make it more accessible to general
readers who are familiar with matrix techniques and to present an alternative approach to
specialists who are mainly familiar with the projection operator formalism which tends to
dominate some parts of the research literature. As the writing of the review progressed and the
various test calculations were performed it soon became apparent that a closed and definitive
account of the field could not be achieved. Each new method of calculation which succeeded
would suggest a possible combination with an earlier method and each point of dispute in the
literature would call for a more lengthy analysis of the fundamental theory. Thus the longer
the review became the more distant became the hypothetical endpoint of the work, as the
parts of the assembled material began to combine to produce an increasing progeny of ideas
and possibilities. Faced with this ‘effet du lapin’, the authors have left scattered throughout
the text a variety of conjectures about theoretical points and possible computational methods;
these will demonstrate to the general reader that the subject is still far from closed and will
give specialists in the field some material and ideas for further work. Of the several techniques
which have been introduced and tested during the writing of the review it is perhaps the simple
matrix square root algorithm 1, based on Higham’s work, and the versatile SCM algorithm
which will be of the most general use to both general readers and to specialists. At several
points throughout the text it has been pointed out that, despite its widespread application to
Hermitian (usually real symmetric) matrices, the wave operator formalism is applicable in a
wider context. In part 2 of the review the power of the formalism will become even more
apparent when its modern time-dependent version is described. When the Hamiltonian begins
to vary with time it is clear that the fixed F transformation which has been used in part 1
will have to be replaced by some time-dependent entity. As might be anticipated on intuitive
grounds, the quantity which is zero for a fixed F (the function f (F,H) of part 1) plays the
role of a driving term in an equation of motion which can be constructed for a time-dependent
counterpart of F which appears in the dynamical version of the theory. The appendix gives a
foretaste of this behaviour using a simple case which is understandable within the formalism
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of the present part of the review. Despite the increased complication associated with the theory
of the time-dependent wave operator it will emerge that some of the tools developed in the
simple test calculations of part 1 will also be of value when tackling the time-dependent wave
operator calculations described in part 2. As a consequence of the new time-dependence of
the variables appearing in the theory the methods of part 1 will often be called upon to handle
complex (rather than real) matrices and so will be able to show their full capabilities. Like the
Sundance Kid, they are even better when they move!

Dedication

Gert Due Billing made many original contributions to molecular theory and for more than a
decade was a much-valued colleague of the authors. Illness prevented him from joining the
authors in Besançon during the writing of the present review. We wish to dedicate this work
to his memory.

Appendix

The present part 1 deals with the more traditional time-independent aspects of Bloch wave
operator theory. Even so it is possible to get a preliminary idea of the dynamical theory of part 2
by looking at the simple case in which the A subspace is taken to be one dimensional. If a
fixed basis is used then it is the coefficients C(J ) in the column describing the wavefunction
which will vary. C(1) will vary in some way and so will the ratios F(J ) = C(J )/C(1) which
correspond to the elements of the reduced wave operator as defined in this review. Taking the
column C to vary in accord with the time-dependent Schrödinger equation

ih̄
dC

dt
= HC (A.1)

the varying column C can be written in the form of a product

C = (I + F)C(1)e(1) (A.2)

where I and F are in full matrix square form and e(1) is the traditional unit column. F only
contains non-zero elements in column 1 and has a zero first element. The representation (2)
is still perfectly general. By recalling the matrix multiplication properties summarized in
section 2.4 the reader will quickly establish the results.

F = 0 : F dF/dt = 0 : (I + F)−1 = I − F (A.3)

since dF/dt is also a matrix with its non-zero elements in column 1. Substituting (A.2) into
(A.1) and working out the left- and right-hand sides leads to the result

ih̄

[
dC

dt
+

dF

dt
C(1)

]
e(1) = (I − F)H(I + F)C(1)e(1). (A.4)

Multiplying this equation on the left with the transpose first of e(J ) for J �= 1 and then with
the transpose of e(1) gives, after cancelling those terms which are zero by virtue of equations
(A.3), two equations which can be written in component form as follows (note that the full
matrix forms are involved):

ih̄
dF(J, 1)

dt
= [(I − F)H(I + F)](J, 1) (A.5)

ih̄
dA(1)

dt
= [(I − F)H(I + F)](1, 1)C(1)

= [H(I + F)](1, 1)
(A.6)
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where the third member of (A.6) follows on removing the formally zero terms from the
second member. The results above are (for this simple case) the promised generalizations of
equation (2.28) of the text, with terms which are zero in the time-independent case acting as
driving terms in the equations of motion of the time-dependent case. When applications of the
equations above are made it becomes important to know whether the use of a finite basis can
suffice to describe a particular dynamical process which in principle requires a complete basis;
this is analogous to the simpler problem of choosing a finite basis to simulate a Hilbert space
calculation in the Rayleigh–Ritz approach. The most obvious problems, of course, are those
of finding integration methods for the family of nonlinear equations of motion arising above
and of seeing what happens in the case of a selected A space with more than one component.
Part 2 of this review (which is now being completed) will deal with the relatively modern
and ongoing set of ideas and calculational methods which have been and currently are being
developed to deal with a dynamical extension of the traditional Bloch wave operator concept.
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